find the centroid and boundaries y=x^2 and the line y=x
S=∫01∫x2xdydx=∫01(x−x2)dx=12−13=16cx=1S∫01∫x2xxdydx=6∫01x(x−x2)dx=6(13−14)=12cy=1S∫01∫x2xydydx=6∫01(x2−x42)=3(13−15)=25(12,25)−centroidS=\int_0^1{\int_{x^2}^x{dydx}}=\int_0^1{\left( x-x^2 \right) dx}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\\c_x=\frac{1}{S}\int_0^1{\int_{x^2}^x{xdydx}}=6\int_0^1{x\left( x-x^2 \right) dx}=6\left( \frac{1}{3}-\frac{1}{4} \right) =\frac{1}{2}\\c_y=\frac{1}{S}\int_0^1{\int_{x^2}^x{ydydx}}=6\int_0^1{\left( \frac{x^2-x^4}{2} \right)}=3\left( \frac{1}{3}-\frac{1}{5} \right) =\frac{2}{5}\\\left( \frac{1}{2},\frac{2}{5} \right) -centroidS=∫01∫x2xdydx=∫01(x−x2)dx=21−31=61cx=S1∫01∫x2xxdydx=6∫01x(x−x2)dx=6(31−41)=21cy=S1∫01∫x2xydydx=6∫01(2x2−x4)=3(31−51)=52(21,52)−centroid
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment