Answer to Question #315665 in Calculus for Niu_bi

Question #315665

ACTIVITY IN BASIC CALCULUS

BASIC RULES IN DERIVATIVE


 Complete the blanks of the given function below with a number (except 0 and 1) to create your own problem and find the derivative of the function. Show your complete solution to each problem.

 

1. f(x) = -4x5+ ______x-4 - 2468


2. f (x) =____x-3- _____x1/4 - 12x


3.f(x)= ____ x34=x6+23x6\sqrt[4]{x^3} - \underset{x^6}{=} + \frac{2}{3} x^6


4.f (x) = =x6\underset{x^-6}{=} -____ x2 + x4\sqrt[4]{x}


1
Expert's answer
2022-03-28T07:25:25-0400

1.


f(x)=4x5+3x42468f(x)=20x412x5f(x) = -4x^5 + 3x^{-4} - 2468\\ \begin{aligned} f'(x)= & -20 x^{4}-\frac{12}{x^{5}} \end{aligned}

2.


f(x)=6x312x1/412xf(x)=ddx[12x12x4+6x3]=12ddx[x]12ddx[x4]+6ddx[1x3]=1211214x141+6(3)x4f(x)=3x3418x412f (x) = 6x^{-3} -12x^{1/4} - 12x\\ \begin{aligned} f'(x) = & \frac{\mathrm{d}}{\mathrm{d} x}\left[-12 x-12 \sqrt[4]{x}+\frac{6}{x^{3}}\right] \\ = & -12 \cdot \frac{\mathrm{d}}{\mathrm{d} x}[x]-12 \cdot \frac{\mathrm{d}}{\mathrm{d} x}[\sqrt[4]{x}]+6 \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{1}{x^{3}}\right] \\ = & -12 \cdot 1-12 \cdot \frac{1}{4} x^{\frac{1}{4}-1}+6(-3) x^{-4} \\ f'(x)= & -\frac{3}{x^{\frac{3}{4}}}-\frac{18}{x^{4}}-12 \end{aligned}

3.


f(x)=5x343x6+23x6f(x)=ddx[2x63+5x343x6]=23ddx[x6]+5ddx[x34]3ddx[1x6]=26x53+534x3413(6)x7f(x)=4x5+154x4+18x7f(x) = 5\sqrt[4]{x^3}-\frac{3}{x^6}+\frac{2}{3}x^6\\ \begin{aligned} f'(x) =& \frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{2 x^{6}}{3}+5 x^{\frac{3}{4}}-\frac{3}{x^{6}}\right] \\ = & \frac{2}{3} \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[x^{6}\right]+5 \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[x^{\frac{3}{4}}\right]-3 \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{1}{x^{6}}\right] \\ =& \frac{2 \cdot 6 x^{5}}{3}+5 \cdot \frac{3}{4} x^{\frac{3}{4}-1}-3(-6) x^{-7} \\ f'(x) = & 4 x^{5}+\frac{15}{4 \sqrt[4]{x}}+\frac{18}{x^{7}} \end{aligned}

4.


f(x)=7x64x2+x1/4f(x)=ddx[7x64x2+x4]=7ddx[x6]4ddx[x2]+ddx[x4]=76x542x+14x141f(x)=42x58x+14x34f(x) = \frac{7}{x^{-6}}-4x^2 + {x^{1/4}}\\ \begin{aligned} f'(x) = &\frac{\mathrm{d}}{\mathrm{d} x}\left[7 x^{6}-4 x^{2}+\sqrt[4]{x}\right] \\ = &7 \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[x^{6}\right]-4 \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}\right]+\frac{\mathrm{d}}{\mathrm{d} x}[\sqrt[4]{x}] \\ =& 7 \cdot 6 x^{5}-4 \cdot 2 x+\frac{1}{4} x^{\frac{1}{4}-1} \\ f'(x)=& 42 x^{5}-8 x+\frac{1}{4 x^{\frac{3}{4}}} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment