Given a function f(x) , the derivative (by definition) is:
f′(x)=h→0limhf(x+h)−f(x) Now , given g(x)=xf(x) ,
g′(x)======g′(x)=h→0limh(x+h)f(x+h)−xf(x)h→0limhxf(x+h)+hf(x+h)−xf(x)h→0limhxf(x+h)−xf(x)+hf(x+h)h→0limhx(f(x+h)−f(x))+hf(x+h)h→0limhx(f(x+h)−f(x))+h→0limhhf(x+h)h→0limx(hf(x+h)−f(x))+h→0limf(x+h)xf′(x)+f(x) Q.E.D
Comments