Question #315582

Let 𝑓(π‘₯) = ⌊π‘₯βŒ‹ + βŒŠβˆ’π‘₯βŒ‹, where ⌊π‘₯βŒ‹ is the greatest integer less than or equal to π‘₯.


(π‘Ž) For what values of π‘Ž, does limπ‘₯β†’π‘Ž


𝑓(π‘₯)exist?


(𝑏) At what numbers is 𝑓 discontinuous?

1
Expert's answer
2022-03-25T15:29:33-0400

(a) Let a∈Raβˆˆβ„ such that aβˆ‰Zaβˆ‰β„€ .

let ⌊aβŒ‹=m\lfloor{a}\rfloor=m

=>βŒŠβˆ’aβŒ‹=βˆ’(m+1)=> \lfloor{-a}\rfloor=-(m+1)


There exist Ξ΅>0Ξ΅>0 such that βˆ€r∈(aβˆ’Ξ΅,a+Ξ΅)βˆ€ r∈(a-Ξ΅,a+Ξ΅)

=>⌊rβŒ‹=m=> \lfloor{r}\rfloor=m

and βŒŠβˆ’rβŒ‹=βˆ’(m+1)\lfloor{-r}\rfloor=-(m+1)


Thus,

lim⁑xβ†’a+f(x)=lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’af(x)\lim\limits_{x\rarr a^{+}}f(x)=\lim\limits_{x\rarr a^{-}} f(x)=\lim\limits_{x\rarr a}f(x)

=⌊rβŒ‹+βŒŠβˆ’rβŒ‹=mβˆ’(m+1)=βˆ’1=\lfloor{r}\rfloor+\lfloor{-r}\rfloor=m-(m+1)=-1



Suppose a∈Zaβˆˆβ„€ . There exist Ξ΅>0Ξ΅>0 such that βˆ€k∈(aβˆ’Ξ΅,a)βˆ€ k∈(a-Ξ΅, a)

=>⌊kβŒ‹=aβˆ’1=> \lfloor{k}\rfloor=a-1

and βŒŠβˆ’kβŒ‹=βˆ’a\lfloor{-k}\rfloor=-a


lim⁑xβ†’aβˆ’f(x)=⌊kβŒ‹+βŒŠβˆ’kβŒ‹=(aβˆ’1)βˆ’a=βˆ’1\lim\limits_{x\rarr a^{-}}f(x)=\lfloor{k}\rfloor+\lfloor{-k}\rfloor=(a-1)-a=-1


Also, there exists Ξ΅>0Ξ΅>0 such that βˆ€k∈(a,a+Ξ΅)βˆ€ k∈(a, a+Ξ΅)

=>⌊kβŒ‹=a=> \lfloor{k}\rfloor=a

and βŒŠβˆ’kβŒ‹=βˆ’(a+1)\lfloor{-k}\rfloor=-(a+1)


lim⁑xβ†’a+f(x)=⌊kβŒ‹+βŒŠβˆ’kβŒ‹=aβˆ’(a+1)=βˆ’1\lim\limits_{x\rarr a^{+}}f(x)=\lfloor{k}\rfloor+\lfloor{-k}\rfloor=a-(a+1)=-1


lim⁑xβ†’a+f(x)=lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’af(x)=βˆ’1\lim\limits_{x\rarr a^{+}}f(x)=\lim\limits_{x\rarr a^{-}} f(x)=\lim\limits_{x\rarr a}f(x)=-1


Hence, lim⁑xβ†’af(x)\lim\limits_{x\rarr a}f(x) exists for all a∈Raβˆˆβ„






(b) Let x∈Rxβˆˆβ„ such that xβˆ‰Zxβˆ‰β„€

let ⌊xβŒ‹=m\lfloor{x}\rfloor=m

=>βŒŠβˆ’xβŒ‹=βˆ’(m+1)=>\lfloor{-x}\rfloor=-(m+1)


f(x)=⌊xβŒ‹+βŒŠβˆ’xβŒ‹=mβˆ’(m+1)=βˆ’1f(x)=\lfloor{x}\rfloor+\lfloor{-x}\rfloor=m-(m+1)=-1


We established in (a) above that lim⁑xβ†’af(x)=βˆ’1\lim\limits_{x\rarr a}f(x)=-1 , where a is any non-integer


Thus, lim⁑xβ†’af(x)=f(x)\lim\limits_{x\rarr a}f(x)=f(x) .


In addition, f(x)f(x) is defined βˆ€x∈Rβˆ€ xβˆˆβ„


Thus, f is continuous at any non-integer point



Suppose x∈Zxβˆˆβ„€ .

f(x)=⌊xβŒ‹+βŒŠβˆ’xβŒ‹=xβˆ’x=0f(x)=\lfloor{x}\rfloor+\lfloor{-x}\rfloor=x-x=0


We established in (a) above that lim⁑xβ†’af(x)=βˆ’1\lim\limits_{x\rarr a}f(x)=-1 , where a is any integer


Thus, lim⁑xβ†’af(x)β‰ f(x)\lim\limits_{x\rarr a}f(x)β‰ f(x)

Hence, f is discontinuous at any integer point.


f is discontinuous βˆ€x∈Zβˆ€xβˆˆβ„€


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS