\int _3^6\:|12x-10|dx
Solution
∫36∣12x−10∣ dx=2∫36∣6x−5∣ dx\int\limits_3^6 {\left| {12x - 10} \right|} \,dx = 2\int\limits_3^6 {\left| {6x - 5} \right|} \,dx3∫6∣12x−10∣dx=23∫6∣6x−5∣dx
Then
∫∣6x−5∣ dx=16∫∣u∣ du=16u∣u∣2+C=u∣u∣12+C=(6x−5)∣6x−5∣12+C\int {\left| {6x - 5} \right|} \,dx = \frac{1}{6}\int {\left| u \right|} \,du\\ = \frac{1}{6}\frac{{u\left| u \right|}}{2} + C\\ = \frac{{u\left| u \right|}}{{12}} + C\\ = \frac{{\left( {6x - 5} \right)\left| {6x - 5} \right|}}{{12}} + C∫∣6x−5∣dx=61∫∣u∣du=612u∣u∣+C=12u∣u∣+C=12(6x−5)∣6x−5∣+C
Therefore,
∫36∣12x−10∣ dx=[2×(6x−5)∣6x−5∣12]36=16[(6x−5)∣6x−5∣]36=16[(6(6)−5)∣6(6)−5∣−(6(3)−5)∣6(3)−5∣]=16[(31)∣31∣−(18)∣18∣]=132\begin{array}{l} \int\limits_3^6 {\left| {12x - 10} \right|} \,dx = \left[ {2 \times \frac{{\left( {6x - 5} \right)\left| {6x - 5} \right|}}{{12}}} \right]_3^6\\ = \frac{1}{6}\left[ {\left( {6x - 5} \right)\left| {6x - 5} \right|} \right]_3^6\\ = \frac{1}{6}\left[ {\left( {6\left( 6 \right) - 5} \right)\left| {6\left( 6 \right) - 5} \right| - \left( {6\left( 3 \right) - 5} \right)\left| {6\left( 3 \right) - 5} \right|} \right]\\ = \frac{1}{6}\left[ {\left( {31} \right)\left| {31} \right| - \left( {18} \right)\left| {18} \right|} \right]\\ = 132 \end{array}3∫6∣12x−10∣dx=[2×12(6x−5)∣6x−5∣]36=61[(6x−5)∣6x−5∣]36=61[(6(6)−5)∣6(6)−5∣−(6(3)−5)∣6(3)−5∣]=61[(31)∣31∣−(18)∣18∣]=132
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments