Question #310743

\int _3^6\:|12x-10|dx


1
Expert's answer
2022-03-14T17:16:38-0400

Solution


3612x10dx=2366x5dx\int\limits_3^6 {\left| {12x - 10} \right|} \,dx = 2\int\limits_3^6 {\left| {6x - 5} \right|} \,dx


Then 


6x5dx=16udu=16uu2+C=uu12+C=(6x5)6x512+C\int {\left| {6x - 5} \right|} \,dx = \frac{1}{6}\int {\left| u \right|} \,du\\ = \frac{1}{6}\frac{{u\left| u \right|}}{2} + C\\ = \frac{{u\left| u \right|}}{{12}} + C\\ = \frac{{\left( {6x - 5} \right)\left| {6x - 5} \right|}}{{12}} + C


Therefore, 


3612x10dx=[2×(6x5)6x512]36=16[(6x5)6x5]36=16[(6(6)5)6(6)5(6(3)5)6(3)5]=16[(31)31(18)18]=132\begin{array}{l} \int\limits_3^6 {\left| {12x - 10} \right|} \,dx = \left[ {2 \times \frac{{\left( {6x - 5} \right)\left| {6x - 5} \right|}}{{12}}} \right]_3^6\\ = \frac{1}{6}\left[ {\left( {6x - 5} \right)\left| {6x - 5} \right|} \right]_3^6\\ = \frac{1}{6}\left[ {\left( {6\left( 6 \right) - 5} \right)\left| {6\left( 6 \right) - 5} \right| - \left( {6\left( 3 \right) - 5} \right)\left| {6\left( 3 \right) - 5} \right|} \right]\\ = \frac{1}{6}\left[ {\left( {31} \right)\left| {31} \right| - \left( {18} \right)\left| {18} \right|} \right]\\ = 132 \end{array}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS