Question #310702

Find the fourier integral for f(x)= C |x|<=1 and f(x)= 0 |x|> 1 we here C is constant


1
Expert's answer
2022-03-14T17:04:36-0400

Calculate the coefficients:

A(λ)=1π+f(x)cos(λx)dx=cπ1+1cos(λx)dx=2cλπsin(λ)A(\lambda)=\frac{1}{\pi}\int_{-\infty}^{+\infty}f(x)\cos(\lambda x)dx=\frac{c}{\pi}\int_{-1}^{+1}\cos(\lambda x)dx\\ =\frac{2c}{\lambda\pi}\sin(\lambda)

Due to the fact that ff is an even function B(λ)0B(\lambda)\equiv0 . So, fourier integral:

f(x)=0+2cλπsin(λ)cos(λx)dλf(x)=\int_0^{+\infty}\frac{2c}{\lambda\pi}\sin(\lambda)\cos(\lambda x)d\lambda


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS