Find the fourier integral for f(x)= C |x|<=1 and f(x)= 0 |x|> 1 we here C is constant
Calculate the coefficients:
A(λ)=1π∫−∞+∞f(x)cos(λx)dx=cπ∫−1+1cos(λx)dx=2cλπsin(λ)A(\lambda)=\frac{1}{\pi}\int_{-\infty}^{+\infty}f(x)\cos(\lambda x)dx=\frac{c}{\pi}\int_{-1}^{+1}\cos(\lambda x)dx\\ =\frac{2c}{\lambda\pi}\sin(\lambda)A(λ)=π1∫−∞+∞f(x)cos(λx)dx=πc∫−1+1cos(λx)dx=λπ2csin(λ)
Due to the fact that fff is an even function B(λ)≡0B(\lambda)\equiv0B(λ)≡0 . So, fourier integral:
f(x)=∫0+∞2cλπsin(λ)cos(λx)dλf(x)=\int_0^{+\infty}\frac{2c}{\lambda\pi}\sin(\lambda)\cos(\lambda x)d\lambdaf(x)=∫0+∞λπ2csin(λ)cos(λx)dλ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments