Evaluate each of the following functions, find the indicated derivative
1. π(π₯) = π₯^2 β 4π₯ + 1; πβ²(2)
2. π(π₯) = π₯^3 + 2; πβ²(β2)
3. π(π₯) = 2π₯^4 + 3π₯^3 β 2π₯ + 7; πβ²(0)
4. f(x) = β2x + 7; f'(1)
5. f(x) = 1 + βx^2 + 3x +6; f'(2)
6. f(x) = x/x+4 ; f'(-3)
7. f(x) = x^2 +3/4 - x^2 ; f'(-1)
8. f(x) = βx + 3/x - 4 ;f'(1)
9. f(x) = 3- β 5x - 9/2x - 1 f'(2)
10. f(x) = 2x^2 + 3 - 1; f'(-1)
Solution (1)
"f\\left( x \\right) = {x^2} - 4x + 1\\\\\nf'\\left( x \\right) = 2x - 4\\\\\nf'\\left( 2 \\right) = 2\\left( 2 \\right) - 4 = 0"
Solution (2)
"f\\left( x \\right) = {x^3} + 2\\\\\nf'\\left( x \\right) = 3{x^2}\\\\\nf'\\left( { - 2} \\right) = 3{\\left( { - 2} \\right)^2} = 12"
Solution (3)
"f\\left( x \\right) = 2{x^4} + 3{x^3} - 2x + 7\\\\\nf'\\left( x \\right) = 8{x^3} + 9{x^2} - 2\\\\\nf'\\left( 0 \\right) = 8{\\left( 0 \\right)^3} + 9{\\left( 0 \\right)^2} - 2 = - 2"
Solution (4)
"f\\left( x \\right) = \\sqrt {2x + 7} \\\\\nf'\\left( x \\right) = \\frac{1}{{2\\sqrt {2x + 7} }}\\left( 2 \\right) = \\frac{1}{{\\sqrt {2x + 7} }}\\\\\nf'\\left( 1 \\right) = \\frac{1}{{\\sqrt {2\\left( 1 \\right) + 7} }} = \\frac{1}{{\\sqrt 9 }} = \\frac{1}{3}"
Solution (5)
"f\\left( x \\right) = 1 + \\sqrt {{x^2} + 3x + 6} \\\\\nf'\\left( x \\right) = 0 + \\frac{1}{{2\\sqrt {{x^2} + 3x + 6} }}\\left( {2x + 3} \\right) = \\frac{{2x + 3}}{{2\\sqrt {{x^2} + 3x + 6} }}\\\\\nf'\\left( 2 \\right) = \\frac{{2\\left( 2 \\right) + 3}}{{2\\sqrt {{{\\left( 2 \\right)}^2} + 3\\left( 2 \\right) + 6} }} = \\frac{7}{{2\\sqrt {16} }} = \\frac{7}{8}"
Solution (6)
"f\\left( x \\right) = \\frac{x}{{x + 4}}\\\\\nf'\\left( x \\right) = \\frac{{\\left( {x + 4} \\right){{\\left( x \\right)}^\\prime } - \\left( x \\right){{\\left( {x + 4} \\right)}^\\prime }}}{{{{\\left( {x + 4} \\right)}^2}}}\\\\\nf'\\left( x \\right) = \\frac{{x + 4 - x}}{{{{\\left( {x + 4} \\right)}^2}}} = \\frac{4}{{{{\\left( {x + 4} \\right)}^2}}}\\\\\nf'\\left( { - 3} \\right) = \\frac{4}{{{{\\left( {\\left( { - 3} \\right) + 4} \\right)}^2}}} = \\frac{4}{{{1^2}}} = 4"
Solution (7)
"f\\left( x \\right) = \\frac{{{x^2} + 3}}{{4 - {x^2}}}\\\\\nf'\\left( x \\right) = \\frac{{\\left( {4 - {x^2}} \\right)\\left( {2x} \\right) - \\left( {{x^2} + 3} \\right)\\left( { - 2x} \\right)}}{{{{\\left( {4 - {x^2}} \\right)}^2}}}\\\\\nf'\\left( x \\right) = \\frac{{8x - 2{x^3} + 2{x^3} + 6x}}{{{{\\left( {4 - {x^2}} \\right)}^2}}} = \\frac{{14x}}{{{{\\left( {4 - {x^2}} \\right)}^2}}}\\\\\nf'\\left( { - 1} \\right) = \\frac{{14\\left( { - 1} \\right)}}{{{{\\left( {4 - {{\\left( { - 1} \\right)}^2}} \\right)}^2}}} = \\frac{{ - 14}}{{{3^2}}} = - \\frac{{14}}{9}"
Solution (8)
"f\\left( x \\right) = \\sqrt x + \\frac{3}{x} = \\sqrt x + 3{x^{ - 1}}\\\\\nf'\\left( x \\right) = \\frac{1}{{2\\sqrt x }} - 3{x^{ - 2}} = \\frac{1}{{2\\sqrt x }} - \\frac{3}{{{x^2}}}\\\\\nf'\\left( 1 \\right) = \\frac{1}{{2\\sqrt {\\left( 1 \\right)} }} - \\frac{3}{{{{\\left( 1 \\right)}^2}}} = \\frac{1}{2} - 3 = - \\frac{5}{2}"
Solution (9)
"f\\left( x \\right) = 3 - \\sqrt {5x} - \\frac{9}{{2x}} = 3 - \\sqrt {5x} - \\frac{9}{2}{x^{ - 1}}\\\\\nf'\\left( x \\right) = 0 - \\frac{1}{{2\\sqrt {5x} }}\\left( 5 \\right) + \\frac{9}{2}{x^{ - 2}} = - \\frac{{\\sqrt 5 }}{{2\\sqrt x }} + \\frac{9}{{2{x^2}}}\\\\\nf'\\left( 2 \\right) = - \\frac{{\\sqrt 5 }}{{2\\sqrt {\\left( 2 \\right)} }} + \\frac{9}{{2{{\\left( 2 \\right)}^2}}} = \\frac{{\\sqrt 5 }}{{2\\sqrt 2 }} + \\frac{9}{8}"
Solution (10)
"f\\left( x \\right) = 2{x^2} + 3x - 1\\\\\nf'\\left( x \\right) = 4x + 3\\\\\nf'\\left( { - 1} \\right) = 4\\left( { - 1} \\right) + 3 = - 1"
Comments
Leave a comment