Answer to Question #307749 in Calculus for Luna Heart

Question #307749

Determine whether if


lim f(c) = f(c)


x→c





1. f(x) = x+2; c = -1



2. f(x) = x-2; c = 0




3. (at c = -1 )


f(x) = {x ² - 1 if x < -1}



f(x) = { (x - 1) ² - 4 if x ≥ -1}







4. (at c = 1 )





f(x) = {x³ - 1 if x < 1}





f(x) = { x² + 4 if x ≥ 1}






1
Expert's answer
2022-03-08T21:52:52-0500

Solution (1)


\begin{array}{l} f\left( x \right) = x + 2\\ \mathop {\lim }\limits_{x \to - 1} f\left( x \right) = \mathop {\lim }\limits_{x \to - 1} \left( {x + 2} \right) = - 1 + 2\\ f\left( { - 1} \right) = - 1 + 2\\ \mathop {\lim }\limits_{x \to c} f\left( x \right) = f\left( c \right) \end{array}\





Solution (2)

\begin{array}{l} f\left( x \right) = x - 2\\ \mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 = - 2\\ f\left( 0 \right) = 0 - 2 = - 2\\ \mathop {\lim }\limits_{x \to c} f\left( x \right) = f\left( c \right) \end{array}\





Solution (3)


\begin{array}{l} f\left( x \right) = & \left\{ \begin{array}{l} {x^2} - 1 & & x < - 1\\ {\left( {x - 1} \right)^2} & & x \ge - 1 & \end{array} \right. & c = - 1\\ \end{array}\



limx1f(x)=limx1(x21)=(1)21=0limx1+f(x)=limx1+(x1)2=(11)2=4\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {{x^2} - 1} \right) = {\left( { - 1} \right)^2} - 1 = 0\\ \mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} {\left( {x - 1} \right)^2} = {\left( { - 1 - 1} \right)^2} = 4



Since

\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right)\


Hence, the limit at x=c=1x=c=-1 does not exist. 



Solution (4)


\begin{array}{l} f\left( x \right) = & \left\{ \begin{array}{l} {x^3} - 1 & & x < 1\\ {x^2} + 4 & & x \ge 1 & \end{array} \right. & c = 1\\ \end{array}\



\begin{array}{l} \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} - 1} \right) = {\left( 1 \right)^3} - 1 = 0\\ \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 4} \right) = {\left( {{{\left( 1 \right)}^2} + 4} \right)^2} = 25 \end{array}\


Since

\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\


Hence, the limit at x=c=1x=c=1 does not exist. 




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment