1. Determine the center and radius given the equation of a circle in standard form.
1. (x-5)+(y + 4)² = 64
2. (x + 9) +(y-7)² = 121
3. x² + (y+6)² = 4
4. (x-1)² + y² = 1
• II. Convert the equation of a circle in standard form to general form or vice versa.
1. (x-2)² + (y+6)² = 4 2. (x+6)² + (y + 4)² = 36
3. x² + y² + 4x-2y-4=0
Solution (1)
"\\begin{array}{l}\n\\left( {x - 5} \\right) + \\left( {y{\\rm{ }} + {\\rm{ }}4} \\right){\\rm{ }} = {\\rm{ }}64\\\\\n{\\left( {x - 5} \\right)^2} + {\\left( {y - \\left( { - 4} \\right)} \\right)^2} = {8^2}\n\\end{array}\\" Center is "(5,-4)" and Radius "8"
"\\begin{array}{l}\n{\\left( {x + 9} \\right)^2}{\\rm{ }} + \\left( {y - 7} \\right){\\rm{ }} = {\\rm{ }}121\\\\\n{\\left( {x - \\left( { - 9} \\right)} \\right)^2}{\\rm{ }} + \\left( {y - 7} \\right){\\rm{ }} = {11^2}\n\\end{array}\\" Center is "(-9,7)" and Radius "11"
"\\begin{array}{l}\n{\\left( {x - 0} \\right)^2} + {\\left( {y + 6} \\right)^2} = 4\\\\\n{\\left( {x - 0} \\right)^2} + {\\left( {y - \\left( { - 6} \\right)} \\right)^2} = {2^2}\n\\end{array}\\" Center is "(0,-6)" and Radius "2"
"\\begin{array}{l}\n{\\left( {x - 1} \\right)^2} + {\\rm{ }}{y^2}{\\rm{ }} = 1\\\\\n{\\left( {x - 1} \\right)^2} + {\\left( {y - 0} \\right)^2} = {1^2}\n\\end{array}\\" Center is "(1, 0)" and Radius "1"
Solution (2)
"\\begin{array}{l}\n{\\left( {x - 2} \\right)^2} + {\\rm{ }}{\\left( {y + 6} \\right)^2} = {\\rm{ }}4\\\\\n{x^2} - 4x + 4 + {y^2} + 12y + 36 = 4\\\\\n{x^2} + {y^2} - 4x + 12y + 28 = 0\n\\end{array}\\" The general form is "{x^2} + {y^2} - 4x + 12y + 28 = 0"
"\\begin{array}{l}\n{\\left( {x + 6} \\right)^2} + {\\left( {y + 4} \\right)^2} = 36\\\\\n{x^2} + 12x + 36 + {y^2} + 8y + 16 = 36\\\\\n{x^2} + {y^2} + 12x + 8y + 16 = 0\n\\end{array}\\" The general form is "{x^2} + {y^2} + 12x + 8y + 16 = 0"
"{x^2} + {y^2} + 4x - 2y - 4 = 0" This is already in the general form
Comments
Leave a comment