Determine whether if lim f(c) = f(c)
x→c
1. f(x) = x+2; c = -1
2. f(x) = x-2; c = 0
3. (at c = -1 )
f(x) = {x ² - 1 if x < -1}
f(x) = { (x - 1) ² - 4 if x ≥ -1}
4. (at c = 1 )
f(x) = {x³ - 1 if x < 1}
f(x) = { x² + 4 if x ≥ 1}
"1. \\lim\\limits_ {x\\to-1}(x+2)=-1+2=1\\\\\n2. \\lim\\limits_ {x\\to0}(x-2)=0-2=-2\\\\\n3. \\lim\\limits_ {x\\to-1-0}(x^2-1)=(-1)^2-1=1-1=0\\\\\n\\lim\\limits_ {x\\to-1+0}((x-1)^2-4)=(-1-1)^2-4=4-4=0\\\\\n4. \\lim\\limits_ {x\\to1-0}(x^3-1)=1^3-1=1-1=0\\\\\n\\lim\\limits_ {x\\to1+0}(x^2+4)=1^2+4=1+4=5\\\\"
Comments
Leave a comment