Determine whether if lim f(c) = f(c)
x→c
1. f(x) = x+2; c = -1
2. f(x) = x-2; c = 0
3. (at c = -1 )
f(x) = {x ² - 1 if x < -1}
f(x) = { (x - 1) ² - 4 if x ≥ -1}
4. (at c = 1 )
f(x) = {x³ - 1 if x < 1}
f(x) = { x² + 4 if x ≥ 1}
1.limx→−1(x+2)=−1+2=12.limx→0(x−2)=0−2=−23.limx→−1−0(x2−1)=(−1)2−1=1−1=0limx→−1+0((x−1)2−4)=(−1−1)2−4=4−4=04.limx→1−0(x3−1)=13−1=1−1=0limx→1+0(x2+4)=12+4=1+4=51. \lim\limits_ {x\to-1}(x+2)=-1+2=1\\ 2. \lim\limits_ {x\to0}(x-2)=0-2=-2\\ 3. \lim\limits_ {x\to-1-0}(x^2-1)=(-1)^2-1=1-1=0\\ \lim\limits_ {x\to-1+0}((x-1)^2-4)=(-1-1)^2-4=4-4=0\\ 4. \lim\limits_ {x\to1-0}(x^3-1)=1^3-1=1-1=0\\ \lim\limits_ {x\to1+0}(x^2+4)=1^2+4=1+4=5\\1.x→−1lim(x+2)=−1+2=12.x→0lim(x−2)=0−2=−23.x→−1−0lim(x2−1)=(−1)2−1=1−1=0x→−1+0lim((x−1)2−4)=(−1−1)2−4=4−4=04.x→1−0lim(x3−1)=13−1=1−1=0x→1+0lim(x2+4)=12+4=1+4=5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments