Give an example of a function of two variables such thatf(0,0) = 0 butfis NOT continuousat (0,0). Explain why the functionfis NOT continuous at (0,0).
Consider the function f:R×R→R, f(x,y)={0, if (x,y)=(0,0)1, if (x,y)≠(0,0).f:\R\times\R\to\R,\ f(x,y)=\begin{cases}0, \text { if }(x,y)=(0,0)\\ 1, \text { if }(x,y)\ne(0,0)\end{cases}.f:R×R→R, f(x,y)={0, if (x,y)=(0,0)1, if (x,y)=(0,0).
Taking into account that limx→0,y→0f(x,y)=1≠0=f(0,0),\lim\limits_{x\to 0,\\ y\to 0}f(x,y)=1\ne 0=f(0,0),x→0,y→0limf(x,y)=1=0=f(0,0), we conclude that the function is not continuous at (0,0).(0,0).(0,0).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment