∫ u ( x , y , z ) d r = ∫ C y 2 d x + x d y + z d z \int {u(x,y,z)dr = } \int\limits_C {{y^2}} dx + xdy + zdz ∫ u ( x , y , z ) d r = C ∫ y 2 d x + x d y + z d z
y = e x ⇒ d y = e x d x y = {e^x} \Rightarrow dy = {e^x}dx y = e x ⇒ d y = e x d x
z = e x ⇒ d z = e x d x z = {e^x} \Rightarrow dz = {e^x}dx z = e x ⇒ d z = e x d x
Then
∫ C y 2 d x + x d y + z d z = ∫ 0 1 e 2 x d x + x e x d x + e x ⋅ e x d x = ∫ 0 1 2 e 2 x d x + ∫ 0 1 x e x d x = e 2 x ∣ 0 1 + ∫ 0 1 x e x d x = e 2 − e 0 + ∫ 0 1 x e x d x \int\limits_C {{y^2}} dx + xdy + zdz = \int\limits_0^1 {{e^{2x}}dx + x{e^x}} dx + {e^x} \cdot {e^x}dx = \int\limits_0^1 {2{e^{2x}}dx + } \int\limits_0^1 {x{e^x}} dx = \left. {{e^{2x}}} \right|_0^1 + \int\limits_0^1 {x{e^x}} dx = {e^2} - {e^0} + \int\limits_0^1 {x{e^x}} dx C ∫ y 2 d x + x d y + z d z = 0 ∫ 1 e 2 x d x + x e x d x + e x ⋅ e x d x = 0 ∫ 1 2 e 2 x d x + 0 ∫ 1 x e x d x = e 2 x ∣ ∣ 0 1 + 0 ∫ 1 x e x d x = e 2 − e 0 + 0 ∫ 1 x e x d x
Since
∫ 0 1 x e x d x = ∣ u = x d v = e x d x d u = d x v = e x ∣ = x e x ∣ 0 1 − ∫ 0 1 e x d x = x e x ∣ 0 1 − e x ∣ 0 1 = e − 0 − e + e 0 = 1 \int\limits_0^1 {x{e^x}} dx = \left| {\begin{matrix}
{u = x}&{dv = {e^x}dx}\\
{du = dx}&{v = {e^x}}
\end{matrix}} \right| = \left. {x{e^x}} \right|_0^1 - \int\limits_0^1 {{e^x}dx = } \left. {x{e^x}} \right|_0^1 - \left. {{e^x}} \right|_0^1 = e - 0 - e + {e^0} = 1 0 ∫ 1 x e x d x = ∣ ∣ u = x d u = d x d v = e x d x v = e x ∣ ∣ = x e x ∣ 0 1 − 0 ∫ 1 e x d x = x e x ∣ 0 1 − e x ∣ 0 1 = e − 0 − e + e 0 = 1
Then
∫ C y 2 d x + x d y + z d z = e 2 − e 0 + ∫ 0 1 x e x d x = e 2 − 1 + 1 = e 2 \int\limits_C {{y^2}} dx + xdy + zdz = {e^2} - {e^0} + \int\limits_0^1 {x{e^x}} dx = {e^2} - 1 + 1 = {e^2} C ∫ y 2 d x + x d y + z d z = e 2 − e 0 + 0 ∫ 1 x e x d x = e 2 − 1 + 1 = e 2
Comments