Question #271512

The drawing below shows a square with side a. A straight line intersects the square and encloses

an area A. The heights x and y on the left and right side (in a distance d from the square) of

the intersecting line can be varied. Assuming that x  y and x; y  a, nd an expression for

the enclosed area A(x; y) with respect to x and y.



1
Expert's answer
2021-12-15T05:11:19-0500


Area of the trapezoid BCDEBCDE



A=BE+CD2â‹…EDA=\dfrac{BE+CD}{2}\cdot EDBMFM=CNFN=GKFK\dfrac{BM}{FM}=\dfrac{CN}{FN}=\dfrac{GK}{FK}

Substitute



BE−xd=CD−xa+d=y−xa+2d\dfrac{BE-x}{d}=\dfrac{CD-x}{a+d}=\dfrac{y-x}{a+2d}d(BE−x)+a(BE−x)=d(CD−x)d(BE-x)+a(BE-x)=d(CD-x)d=a(BE−x)CD−BEd=\dfrac{a(BE-x)}{CD-BE}a+d=a(CD−BE+BE−x)CD−BE=a(CD−x)CD−BEa+d=\dfrac{a(CD-BE+BE-x)}{CD-BE}=\dfrac{a(CD-x)}{CD-BE}a+2d=a(CD−BE+2BE−2x)CD−BEa+2d=\dfrac{a(CD-BE+2BE-2x)}{CD-BE}=a(CD+BE−2x)CD−BE=\dfrac{a(CD+BE-2x)}{CD-BE}BE−xd=CD−BEa\dfrac{BE-x}{d}=\dfrac{CD-BE}{a}y−xa+2d=(y−x)(CD−BE)a(CD+BE−2x)\dfrac{y-x}{a+2d}=\dfrac{(y-x)(CD-BE)}{a(CD+BE-2x)}

Then



CD−BEa=(y−x)(CD−BE)a(CD+BE−2x)\dfrac{CD-BE}{a}=\dfrac{(y-x)(CD-BE)}{a(CD+BE-2x)}CD+BE−2x=y−xCD+BE-2x=y-xCD+BE−2x=y+xCD+BE-2x=y+x

Area of the trapezoid BCDEBCDE



A(x,y)=x+y2â‹…a  (units2)A(x, y)=\dfrac{x+y}{2}\cdot a \ \ ({units}^2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS