Answer to Question #271512 in Calculus for Emma

Question #271512

The drawing below shows a square with side a. A straight line intersects the square and encloses

an area A. The heights x and y on the left and right side (in a distance d from the square) of

the intersecting line can be varied. Assuming that x  y and x; y  a, nd an expression for

the enclosed area A(x; y) with respect to x and y.



1
Expert's answer
2021-12-15T05:11:19-0500


Area of the trapezoid "BCDE"



"A=\\dfrac{BE+CD}{2}\\cdot ED""\\dfrac{BM}{FM}=\\dfrac{CN}{FN}=\\dfrac{GK}{FK}"

Substitute



"\\dfrac{BE-x}{d}=\\dfrac{CD-x}{a+d}=\\dfrac{y-x}{a+2d}""d(BE-x)+a(BE-x)=d(CD-x)""d=\\dfrac{a(BE-x)}{CD-BE}""a+d=\\dfrac{a(CD-BE+BE-x)}{CD-BE}=\\dfrac{a(CD-x)}{CD-BE}""a+2d=\\dfrac{a(CD-BE+2BE-2x)}{CD-BE}""=\\dfrac{a(CD+BE-2x)}{CD-BE}""\\dfrac{BE-x}{d}=\\dfrac{CD-BE}{a}""\\dfrac{y-x}{a+2d}=\\dfrac{(y-x)(CD-BE)}{a(CD+BE-2x)}"

Then



"\\dfrac{CD-BE}{a}=\\dfrac{(y-x)(CD-BE)}{a(CD+BE-2x)}""CD+BE-2x=y-x""CD+BE-2x=y+x"

Area of the trapezoid "BCDE"



"A(x, y)=\\dfrac{x+y}{2}\\cdot a \\ \\ ({units}^2)"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS