y=(x+4)(x+2)(x−1)(x−3)
y=(x2+6x+8)(x2−4x+3)
y′=(2x+6)(x2−4x+3)+(2x−4)(x2+6x+8)
=2x3−8x2+6x+6x2−24x+18
+2x3+12x2+16x−4x2−24x−32
=4x3+6x2−26x−14 Find the critical number(s)
y′=0=>4x3+6x2−26x−14=0
2x3+3x2−13x−7=0
(2x3+x2)+(2x2+x)−(14x+7)=0
x2(2x+1)+x(2x+1)−7(2x+1)=0
(2x+1)(x2+x−7)=0
2x+1=0=>x1=−21
x2+x−7=0
D=(1)2−4(1)(−7)=29>0
x2=2−1−29,x3=2−1+29 Critical numbers:
−21,2−1−29,2−1+29 If x<2−1−29,y′<0,y decreases.
If 2−1−29<x<−21,y′>0,y increases.
If −21<x<2−1+29,y′<0,y decreases.
If x>2−1+29,y′>0,y increases.
Then the function y=(x+4)(x+2)(x−1)(x−3) has 4−1=3 turning points.
Comments