Number of turning point of y=(x+4)(x+2)(x-1)(x-3)
"y=(x^2+6x+8)(x^2-4x+3)"
"y'=(2x+6)(x^2-4x+3)+(2x-4)(x^2+6x+8)"
"=2x^3-8x^2+6x+6x^2-24x+18"
"+2x^3+12x^2+16x-4x^2-24x-32"
"=4x^3+6x^2-26x-14"
Find the critical number(s)
"2x^3+3x^2-13x-7=0"
"(2x^3+x^2)+(2x^2+x)-(14x+7)=0"
"x^2(2x+1)+x(2x+1)-7(2x+1)=0"
"(2x+1)(x^2+x-7)=0"
"2x+1=0=>x_1=-\\dfrac{1}{2}"
"x^2+x-7=0"
"D=(1)^2-4(1)(-7)=29>0"
Critical numbers:
If "x<\\dfrac{-1-\\sqrt{29}}{2}, y'<0, y" decreases.
If "\\dfrac{-1-\\sqrt{29}}{2}<x<-\\dfrac{1}{2}, y'>0, y" increases.
If "-\\dfrac{1}{2}<x<\\dfrac{-1+\\sqrt{29}}{2}, y'<0, y" decreases.
If "x>\\dfrac{-1+\\sqrt{29}}{2}, y'>0, y" increases.
Then the function "y=(x+4)(x+2)(x-1)(x-3)" has "4-1=3" turning points.
Comments
Leave a comment