Question #271495

Number of turning point of y=(x+4)(x+2)(x-1)(x-3)


1
Expert's answer
2021-11-29T12:04:46-0500
y=(x+4)(x+2)(x1)(x3)y=(x+4)(x+2)(x-1)(x-3)

y=(x2+6x+8)(x24x+3)y=(x^2+6x+8)(x^2-4x+3)

y=(2x+6)(x24x+3)+(2x4)(x2+6x+8)y'=(2x+6)(x^2-4x+3)+(2x-4)(x^2+6x+8)

=2x38x2+6x+6x224x+18=2x^3-8x^2+6x+6x^2-24x+18

+2x3+12x2+16x4x224x32+2x^3+12x^2+16x-4x^2-24x-32

=4x3+6x226x14=4x^3+6x^2-26x-14

Find the critical number(s)


y=0=>4x3+6x226x14=0y'=0=>4x^3+6x^2-26x-14=0

2x3+3x213x7=02x^3+3x^2-13x-7=0

(2x3+x2)+(2x2+x)(14x+7)=0(2x^3+x^2)+(2x^2+x)-(14x+7)=0

x2(2x+1)+x(2x+1)7(2x+1)=0x^2(2x+1)+x(2x+1)-7(2x+1)=0

(2x+1)(x2+x7)=0(2x+1)(x^2+x-7)=0

2x+1=0=>x1=122x+1=0=>x_1=-\dfrac{1}{2}

x2+x7=0x^2+x-7=0

D=(1)24(1)(7)=29>0D=(1)^2-4(1)(-7)=29>0


x2=1292,x3=1+292x_2=\dfrac{-1-\sqrt{29}}{2}, x_3=\dfrac{-1+\sqrt{29}}{2}

Critical numbers:


12,1292,1+292-\dfrac{1}{2}, \dfrac{-1-\sqrt{29}}{2},\dfrac{-1+\sqrt{29}}{2}

If x<1292,y<0,yx<\dfrac{-1-\sqrt{29}}{2}, y'<0, y decreases.


If 1292<x<12,y>0,y\dfrac{-1-\sqrt{29}}{2}<x<-\dfrac{1}{2}, y'>0, y increases.


If 12<x<1+292,y<0,y-\dfrac{1}{2}<x<\dfrac{-1+\sqrt{29}}{2}, y'<0, y decreases.


If x>1+292,y>0,yx>\dfrac{-1+\sqrt{29}}{2}, y'>0, y increases.


Then the function y=(x+4)(x+2)(x1)(x3)y=(x+4)(x+2)(x-1)(x-3) has 41=34-1=3 turning points.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS