Answer to Question #271248 in Calculus for ozair

Question #271248

You plan to make a simple, open topped box from a piece of sheet metal by cutting a square – of equal size – from each corner and folding up the sides as shown in the diagram: If 𝑙 = 200π‘šπ‘š and 𝑀 = 150π‘šπ‘š calculate: a) The value of x which will give the maximum volume b) The maximum volume of the box c) Comment of the value obtained in part b.


1
Expert's answer
2021-11-26T00:01:31-0500

a) Let "x=" the length of side of a cutted square




Then the volume of a box will be


"V=x(w-2x)(l-2x), 0<x<w\/2, 0<x<l\/2"

Given "l=200\\ mm, w=150\\ mm"


"V=V(x)=x(150-2x)(200-2x), 0<x<75"

"V(x)=4(75x-x^2)(100-x)"

"=4(7500x-175x^2+x^3)"

Differentiate with respect to "x"


"V'(x)=4(7500-350x+3x^2)"

Find the critical number(s)


"V'(x)=0=>4(7500-350x+3x^2)=0"

"3x^2-350x+7500=0"

"D=(-30)^2-4(3)(7500)=32500"

"x=\\dfrac{350\\pm\\sqrt{32500}}{2(3)}=\\dfrac{175\\pm25\\sqrt{13}}{3}"

Critical numbers: "\\dfrac{175-25\\sqrt{13}}{3}, \\dfrac{175+25\\sqrt{13}}{3}"

If "x<\\dfrac{175-25\\sqrt{13}}{3}, V'(x)>0 , V(x)" increases.


If "\\dfrac{175-25\\sqrt{13}}{3}<x<\\dfrac{175+25\\sqrt{13}}{3}, V'(x)<0 ,"

"V(x)" decreases.


If "x>\\dfrac{175+25\\sqrt{13}}{3}, V'(x)>0 , V(x)" increases.


Since "0<x<75," we consider

If "0<x<\\dfrac{175-25\\sqrt{13}}{3}, V'(x)>0 , V(x)" increases.


If "\\dfrac{175-25\\sqrt{13}}{3}<x<75, V'(x)<0 ," "V(x)" decreases.

The volume has the absolute maximum on "(0, 75)" at "x=\\dfrac{175-25\\sqrt{13}}{3}."

"x=\\dfrac{175-25\\sqrt{13}}{3}."


b)


"V_{max}=4\\cdot\\dfrac{175-25\\sqrt{13}}{3}\\cdot(75-\\dfrac{175-25\\sqrt{13}}{3})"

"\\cdot(100-\\dfrac{175-25\\sqrt{13}}{3})"

"=\\dfrac{62500}{27}(7-\\sqrt{13})(2+\\sqrt{13})(5+\\sqrt{13})"

"=\\dfrac{125000}{27}(35+13\\sqrt{13})\\ ({mm}^3)"

c) Since the number "\\dfrac{175-25\\sqrt{13}}{3}" is irrational we take "x\\approx28.3\\ mm."


"V_{max}=4(28.3)(75-28.3)(100-28.3)=379037.748"

"=379037.748\\ ({mm}^3)\\approx379\\ cm^3"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS