You plan to make a simple, open topped box from a piece of sheet metal by cutting a square – of equal size – from each corner and folding up the sides as shown in the diagram: If 𝑙 = 200𝑚𝑚 and 𝑤 = 150𝑚𝑚 calculate: a) The value of x which will give the maximum volume b) The maximum volume of the box c) Comment of the value obtained in part b.
1
Expert's answer
2021-11-26T00:01:31-0500
a) Let x= the length of side of a cutted square
Then the volume of a box will be
V=x(w−2x)(l−2x),0<x<w/2,0<x<l/2
Given l=200mm,w=150mm
V=V(x)=x(150−2x)(200−2x),0<x<75
V(x)=4(75x−x2)(100−x)
=4(7500x−175x2+x3)
Differentiate with respect to x
V′(x)=4(7500−350x+3x2)
Find the critical number(s)
V′(x)=0=>4(7500−350x+3x2)=0
3x2−350x+7500=0
D=(−30)2−4(3)(7500)=32500
x=2(3)350±32500=3175±2513
Critical numbers: 3175−2513,3175+2513
If x<3175−2513,V′(x)>0,V(x) increases.
If 3175−2513<x<3175+2513,V′(x)<0,
V(x) decreases.
If x>3175+2513,V′(x)>0,V(x) increases.
Since 0<x<75, we consider
If 0<x<3175−2513,V′(x)>0,V(x) increases.
If 3175−2513<x<75,V′(x)<0,V(x) decreases.
The volume has the absolute maximum on (0,75) at x=3175−2513.
x=3175−2513.
b)
Vmax=4⋅3175−2513⋅(75−3175−2513)
⋅(100−3175−2513)
=2762500(7−13)(2+13)(5+13)
=27125000(35+1313)(mm3)
c) Since the number 3175−2513 is irrational we take x≈28.3mm.
Comments