You plan to make a simple, open topped box from a piece of sheet metal by cutting a square β of equal size β from each corner and folding up the sides as shown in the diagram: If π = 200ππ and π€ = 150ππ calculate: a) The value of x which will give the maximum volume b) The maximum volume of the box c) Comment of the value obtained in part b.
a) Let "x=" the length of side of a cutted square
Then the volume of a box will be
Given "l=200\\ mm, w=150\\ mm"
"V(x)=4(75x-x^2)(100-x)"
"=4(7500x-175x^2+x^3)"
Differentiate with respect to "x"
Find the critical number(s)
"3x^2-350x+7500=0"
"D=(-30)^2-4(3)(7500)=32500"
"x=\\dfrac{350\\pm\\sqrt{32500}}{2(3)}=\\dfrac{175\\pm25\\sqrt{13}}{3}"
Critical numbers: "\\dfrac{175-25\\sqrt{13}}{3}, \\dfrac{175+25\\sqrt{13}}{3}"
If "x<\\dfrac{175-25\\sqrt{13}}{3}, V'(x)>0 , V(x)" increases.
If "\\dfrac{175-25\\sqrt{13}}{3}<x<\\dfrac{175+25\\sqrt{13}}{3}, V'(x)<0 ,"
"V(x)" decreases.
If "x>\\dfrac{175+25\\sqrt{13}}{3}, V'(x)>0 , V(x)" increases.
Since "0<x<75," we consider
If "0<x<\\dfrac{175-25\\sqrt{13}}{3}, V'(x)>0 , V(x)" increases.
If "\\dfrac{175-25\\sqrt{13}}{3}<x<75, V'(x)<0 ," "V(x)" decreases.
The volume has the absolute maximum on "(0, 75)" at "x=\\dfrac{175-25\\sqrt{13}}{3}."
"x=\\dfrac{175-25\\sqrt{13}}{3}."
b)
"\\cdot(100-\\dfrac{175-25\\sqrt{13}}{3})"
"=\\dfrac{62500}{27}(7-\\sqrt{13})(2+\\sqrt{13})(5+\\sqrt{13})"
"=\\dfrac{125000}{27}(35+13\\sqrt{13})\\ ({mm}^3)"
c) Since the number "\\dfrac{175-25\\sqrt{13}}{3}" is irrational we take "x\\approx28.3\\ mm."
"=379037.748\\ ({mm}^3)\\approx379\\ cm^3"
Comments
Leave a comment