Question #271248

You plan to make a simple, open topped box from a piece of sheet metal by cutting a square – of equal size – from each corner and folding up the sides as shown in the diagram: If 𝑙 = 200𝑚𝑚 and 𝑤 = 150𝑚𝑚 calculate: a) The value of x which will give the maximum volume b) The maximum volume of the box c) Comment of the value obtained in part b.


1
Expert's answer
2021-11-26T00:01:31-0500

a) Let x=x= the length of side of a cutted square




Then the volume of a box will be


V=x(w2x)(l2x),0<x<w/2,0<x<l/2V=x(w-2x)(l-2x), 0<x<w/2, 0<x<l/2

Given l=200 mm,w=150 mml=200\ mm, w=150\ mm


V=V(x)=x(1502x)(2002x),0<x<75V=V(x)=x(150-2x)(200-2x), 0<x<75

V(x)=4(75xx2)(100x)V(x)=4(75x-x^2)(100-x)

=4(7500x175x2+x3)=4(7500x-175x^2+x^3)

Differentiate with respect to xx


V(x)=4(7500350x+3x2)V'(x)=4(7500-350x+3x^2)

Find the critical number(s)


V(x)=0=>4(7500350x+3x2)=0V'(x)=0=>4(7500-350x+3x^2)=0

3x2350x+7500=03x^2-350x+7500=0

D=(30)24(3)(7500)=32500D=(-30)^2-4(3)(7500)=32500

x=350±325002(3)=175±25133x=\dfrac{350\pm\sqrt{32500}}{2(3)}=\dfrac{175\pm25\sqrt{13}}{3}

Critical numbers: 17525133,175+25133\dfrac{175-25\sqrt{13}}{3}, \dfrac{175+25\sqrt{13}}{3}

If x<17525133,V(x)>0,V(x)x<\dfrac{175-25\sqrt{13}}{3}, V'(x)>0 , V(x) increases.


If 17525133<x<175+25133,V(x)<0,\dfrac{175-25\sqrt{13}}{3}<x<\dfrac{175+25\sqrt{13}}{3}, V'(x)<0 ,

V(x)V(x) decreases.


If x>175+25133,V(x)>0,V(x)x>\dfrac{175+25\sqrt{13}}{3}, V'(x)>0 , V(x) increases.


Since 0<x<75,0<x<75, we consider

If 0<x<17525133,V(x)>0,V(x)0<x<\dfrac{175-25\sqrt{13}}{3}, V'(x)>0 , V(x) increases.


If 17525133<x<75,V(x)<0,\dfrac{175-25\sqrt{13}}{3}<x<75, V'(x)<0 , V(x)V(x) decreases.

The volume has the absolute maximum on (0,75)(0, 75) at x=17525133.x=\dfrac{175-25\sqrt{13}}{3}.

x=17525133.x=\dfrac{175-25\sqrt{13}}{3}.


b)


Vmax=417525133(7517525133)V_{max}=4\cdot\dfrac{175-25\sqrt{13}}{3}\cdot(75-\dfrac{175-25\sqrt{13}}{3})

(10017525133)\cdot(100-\dfrac{175-25\sqrt{13}}{3})

=6250027(713)(2+13)(5+13)=\dfrac{62500}{27}(7-\sqrt{13})(2+\sqrt{13})(5+\sqrt{13})

=12500027(35+1313) (mm3)=\dfrac{125000}{27}(35+13\sqrt{13})\ ({mm}^3)

c) Since the number 17525133\dfrac{175-25\sqrt{13}}{3} is irrational we take x28.3 mm.x\approx28.3\ mm.


Vmax=4(28.3)(7528.3)(10028.3)=379037.748V_{max}=4(28.3)(75-28.3)(100-28.3)=379037.748

=379037.748 (mm3)379 cm3=379037.748\ ({mm}^3)\approx379\ cm^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS