Let d = d= d = the length of cable run under the water, 300 − x = 300-x= 300 − x = the length of cable run over the water.
Then
C o s t = C ( x ) = 5 ( 900 ) 2 + x 2 + 4 ( 300 − x ) , 0 ≤ x ≤ 300 Cost=C(x)=5\sqrt{(900)^2+x^2}+4(300-x), 0\leq x\leq300 C os t = C ( x ) = 5 ( 900 ) 2 + x 2 + 4 ( 300 − x ) , 0 ≤ x ≤ 300
Differentiate with respect to x x x
C ′ ( x ) = 5 ( 2 x ) 2 ( 900 ) 2 + x 2 − 4 C'(x)=\dfrac{5(2x)}{2\sqrt{(900)^2+x^2}}-4 C ′ ( x ) = 2 ( 900 ) 2 + x 2 5 ( 2 x ) − 4 Find the ctitical number(s)
C ′ ( x ) = 0 = > 5 ( 2 x ) 2 ( 900 ) 2 + x 2 − 4 = 0 C'(x)=0=>\dfrac{5(2x)}{2\sqrt{(900)^2+x^2}}-4=0 C ′ ( x ) = 0 => 2 ( 900 ) 2 + x 2 5 ( 2 x ) − 4 = 0
5 x = 4 ( 900 ) 2 + x 2 5x=4\sqrt{(900)^2+x^2} 5 x = 4 ( 900 ) 2 + x 2
25 x 2 = 16 ( 900 ) 2 + 16 x 2 25x^2=16(900)^2+16x^2 25 x 2 = 16 ( 900 ) 2 + 16 x 2
9 x 2 = 16 ( 900 ) 2 9x^2=16(900)^2 9 x 2 = 16 ( 900 ) 2
3 x = ± 4 ( 900 ) 3x=\pm4(900) 3 x = ± 4 ( 900 )
x = ± 1200 x=\pm1200 x = ± 1200 There is no crirical number on [ 0 , 300 ] . [0, 300]. [ 0 , 300 ] .
C ( 0 ) = 5 ( 900 ) 2 + ( 0 ) 2 + 4 ( 300 − 0 ) C(0)=5\sqrt{(900)^2+(0)^2}+4(300-0) C ( 0 ) = 5 ( 900 ) 2 + ( 0 ) 2 + 4 ( 300 − 0 )
= 5 ( 900 ) + 4 ( 300 ) = 5700 ( $ ) =5(900)+4(300)=5700(\$) = 5 ( 900 ) + 4 ( 300 ) = 5700 ( $ )
C ( 300 ) = 5 ( 900 ) 2 + ( 300 ) 2 + 4 ( 300 − 300 ) C(300)=5\sqrt{(900)^2+(300)^2}+4(300-300) C ( 300 ) = 5 ( 900 ) 2 + ( 300 ) 2 + 4 ( 300 − 300 )
= 5 ( 300 ) 10 = 1500 10 ≈ 4743.42 ( $ ) =5(300)\sqrt{10}=1500\sqrt{10}\approx4743.42(\$) = 5 ( 300 ) 10 = 1500 10 ≈ 4743.42 ( $ ) The most economical route is under the water from a power plant to a factory.
Comments