Evaluate the line integral β«π(π₯, π¦, π§) Γ β π πΆ , where π(π₯, π¦, π§) = (π¦ 2 , π₯, π§) and the curve πͺ is described by π = π¦ = π π₯ with π₯ β [0,1].
"Since,\\\\\nz=e^x\\\\\ndz=e^xdx\\\\\nAnd,\\\\\ny=e^x\\\\\ndy=e^xdx\\\\\nTherefore,\\\\\ndr=(dx,dy,dz)=(dx,e^xdx,e^xdx)=(1,e^x,e^x)dx\\\\\nThen,\\\\\n\\int u.dr\\\\\n=\\int(y^2,x,z).(1,e^x,e^x)dx\\\\\n=\\int(e^{2x},x,e^x).(1,e^x,e^x)dx\\\\\n=\\int_0^1(e^{2x}+xe^x+e^{2x})dx\\\\\n=\\int_0^1(xe^x+2e^{2x})dx\\\\\n=[xe^x-e^x+e^{2x}]_0^1\\\\\n=e^2"
Comments
Leave a comment