Question #271129

Evaluate the line integral ∫𝒖(𝑥, 𝑦, 𝑧) × ⅆ𝒓 𝐶 , where 𝒖(𝑥, 𝑦, 𝑧) = (𝑦 2 , 𝑥, 𝑧) and the curve 𝑪 is described by 𝒛 = 𝑦 = 𝑒 𝑥 with 𝑥 ∈ [0,1].


1
Expert's answer
2021-11-26T15:12:00-0500

Since,z=exdz=exdxAnd,y=exdy=exdxTherefore,dr=(dx,dy,dz)=(dx,exdx,exdx)=(1,ex,ex)dxThen,u.dr=(y2,x,z).(1,ex,ex)dx=(e2x,x,ex).(1,ex,ex)dx=01(e2x+xex+e2x)dx=01(xex+2e2x)dx=[xexex+e2x]01=e2Since,\\ z=e^x\\ dz=e^xdx\\ And,\\ y=e^x\\ dy=e^xdx\\ Therefore,\\ dr=(dx,dy,dz)=(dx,e^xdx,e^xdx)=(1,e^x,e^x)dx\\ Then,\\ \int u.dr\\ =\int(y^2,x,z).(1,e^x,e^x)dx\\ =\int(e^{2x},x,e^x).(1,e^x,e^x)dx\\ =\int_0^1(e^{2x}+xe^x+e^{2x})dx\\ =\int_0^1(xe^x+2e^{2x})dx\\ =[xe^x-e^x+e^{2x}]_0^1\\ =e^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS