Answer to Question #270308 in Calculus for JaytheCreator

Question #270308

Find the unit normal to the surface 𝑦 = π‘₯ + 𝑧 3 at the point (1,2,1). 


1
Expert's answer
2021-11-23T16:54:43-0500
F(x,y,z)=xβˆ’y+z3=0F(x, y, z)=x-y+z^3=0

Fx=1,Fy=βˆ’1,Fz=3z2F_x=1, F_y=-1, F_z=3z^2

Point (1,2,1)(1, 2, 1)


Fx=1,Fy=βˆ’1,Fz=3(1)2=3F_x=1, F_y=-1, F_z=3(1)^2=3

βˆ‡F=iβˆ’j+3k\nabla F=i-j+3k

βˆ£βˆ‡F∣=(1)2+(βˆ’1)2+(3)2=11|\nabla F|=\sqrt{(1)^2+(-1)^2+(3)^2}=\sqrt{11}

n=βˆ‡Fβˆ£βˆ‡F∣=111iβˆ’111j+311kn=\dfrac{\nabla F}{|\nabla F|}=\dfrac{1}{\sqrt{11}}i-\dfrac{1}{\sqrt{11}}j+\dfrac{3}{\sqrt{11}}k


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment