Question #270308

Find the unit normal to the surface 𝑦 = 𝑥 + 𝑧 3 at the point (1,2,1). 


1
Expert's answer
2021-11-23T16:54:43-0500
F(x,y,z)=xy+z3=0F(x, y, z)=x-y+z^3=0

Fx=1,Fy=1,Fz=3z2F_x=1, F_y=-1, F_z=3z^2

Point (1,2,1)(1, 2, 1)


Fx=1,Fy=1,Fz=3(1)2=3F_x=1, F_y=-1, F_z=3(1)^2=3

F=ij+3k\nabla F=i-j+3k

F=(1)2+(1)2+(3)2=11|\nabla F|=\sqrt{(1)^2+(-1)^2+(3)^2}=\sqrt{11}

n=FF=111i111j+311kn=\dfrac{\nabla F}{|\nabla F|}=\dfrac{1}{\sqrt{11}}i-\dfrac{1}{\sqrt{11}}j+\dfrac{3}{\sqrt{11}}k


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS