a)
"\\lim\\limits_{x\\to5^-}f(x)=\\lim\\limits_{x\\to5^-}(|2x-10| + 2 )""=\\lim\\limits_{x\\to5^-}(10-2x + 2 )=12-2(5)=2"
"\\lim\\limits_{x\\to5^+}f(x)=\\lim\\limits_{x\\to5^+}(|2x-10| + 2 )"
"=\\lim\\limits_{x\\to5^+}(2x-10 + 2 )=2(5)-8=2"
Then
"f(5)=|2(5)-10|+2=0+2=2"
We have
Therefore the function "f(x)" is continuous at "x=5."
b)
"=\\lim\\limits_{h\\to0^-}\\dfrac{2|h|}{h}=\\lim\\limits_{h\\to0^-}\\dfrac{-2h}{h}=-2"
"=\\lim\\limits_{h\\to0^+}\\dfrac{2|h|}{h}=\\lim\\limits_{h\\to0^+}\\dfrac{2h}{h}=2"
Since
"\\lim\\limits_{h\\to0^-}\\dfrac{f(5+h)-f(5)}{h}=-2""\\not=2=\\lim\\limits_{h\\to0^+}\\dfrac{f(5+h)-f(5)}{h},"
then "\\lim\\limits_{h\\to0}\\dfrac{f(5+h)-f(5)}{h}" does not exist.
Therefore the function "f(x)" is not differentiable at "x=5."
Comments
Leave a comment