Question #256171

Find the domain and range of the bottom half of the given parabola

y2-x-4y+3=0


1
Expert's answer
2021-10-27T12:25:33-0400

y2x4y+3=0y24y+3=xy24y=x3y24y+4=x3+4=x+1(y2)2=x+1y=±x+1+2The bottom half of the parabola isy=x+1+2Hence,domain(y)={xR:x1}x1,x+10,and so2x+12Thus,y2.x1.Hence,range(y)={yR:y2}\displaystyle y^2 - x - 4y + 3 = 0\\ y^2 - 4y + 3 = x\\ y^2 - 4y = x - 3\\ y^2 - 4y + 4 = x - 3 + 4 = x + 1\\ (y - 2)^2 = x + 1\\ y = \pm\sqrt{x + 1} + 2\\ \textup{The bottom half of the parabola is}\\ y = -\sqrt{x + 1} + 2\\ \textup{Hence,}\\ \textup{domain}(y) = \{x \in \mathbb{R}: x \geq -1\}\\ \forall x \geq -1,\,\,\, -\sqrt{x + 1} \leq 0, \\ \textup{and so}\,\,\, 2 - \sqrt{x + 1} \leq 2\\ \textup{Thus,}\,\,\, y \leq 2.\,\,\,\forall x \geq 1.\\ \textup{Hence,}\\ \textup{range}(y) = \{y \in \mathbb{R}: y \leq 2\}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS