Find the domain and range of the bottom half of the given parabola
y2-x-4y+3=0
"\\displaystyle\ny^2 - x - 4y + 3 = 0\\\\\n\ny^2 - 4y + 3 = x\\\\\n\ny^2 - 4y = x - 3\\\\\n\ny^2 - 4y + 4 = x - 3 + 4 = x + 1\\\\\n\n(y - 2)^2 = x + 1\\\\\n\ny = \\pm\\sqrt{x + 1} + 2\\\\\n\n\\textup{The bottom half of the parabola is}\\\\\ny = -\\sqrt{x + 1} + 2\\\\\n\n\\textup{Hence,}\\\\\n\\textup{domain}(y) = \\{x \\in \\mathbb{R}: x \\geq -1\\}\\\\\n\n\\forall x \\geq -1,\\,\\,\\, -\\sqrt{x + 1} \\leq 0, \\\\\n\n\\textup{and so}\\,\\,\\, 2 - \\sqrt{x + 1} \\leq 2\\\\\n\n\\textup{Thus,}\\,\\,\\, y \\leq 2.\\,\\,\\,\\forall x \\geq 1.\\\\\n\\textup{Hence,}\\\\\n\\textup{range}(y) = \\{y \\in \\mathbb{R}: y \\leq 2\\}\\\\"
Comments
Leave a comment