P(x,y)=400x+500y−x2−y2−xy−20000
∂x∂P=400−2x−y
∂y∂P=500−2y−x Find the critical point(s)
⎩⎨⎧∂x∂P=0∂y∂P=0=>⎩⎨⎧400−2x−y=0500−2y−x=0
=>⎩⎨⎧y=400−2x500−800+4x−x=0=>⎩⎨⎧x=100y=200
∂x2∂2P=−2
∂x∂y∂2P=∂y∂x∂2P=−1
∂y2∂2P=−2
D(x,y)=∣∣−2−1−1−2∣∣=4−1=3
∂x2∂2P(100,200)=−2<0
D(100,200)=3>0It can be stated that (100,200) is a relative maximum.
P(100,200)=400(100)+500(200)
−(100)2−(200)2−100(200)−20000=50000
The Profit has the maximum with value of 50000 at x=100 units and y=200 units.
The Profit has no minimum.
Comments