Question #256066

company can produce and sell x-units of one commodity and y-units of other commodity

at a pro€t given as P(x, y) = 400x + 500y − x

2 − y

2 − xy − 20000. Find the units and amount

for which the pro€t is maximum and minimum.



1
Expert's answer
2021-10-25T16:39:25-0400
P(x,y)=400x+500yx2y2xy20000P(x, y)=400x+500y-x^2-y^2-xy-20000

Px=4002xy\dfrac{\partial P}{\partial x}=400-2x-y

Py=5002yx\dfrac{\partial P}{\partial y}=500-2y-x

Find the critical point(s)


{Px=0Py=0=>{4002xy=05002yx=0\begin{cases} \dfrac{\partial P}{\partial x}=0 \\ \\ \dfrac{\partial P}{\partial y}=0 \end{cases}=> \begin{cases} 400-2x-y=0 \\ \\ 500-2y-x=0 \end{cases}

=>{y=4002x500800+4xx=0=>{x=100y=200=> \begin{cases} y=400-2x \\ \\ 500-800+4x-x=0 \end{cases}=> \begin{cases} x=100 \\ \\ y=200 \end{cases}



2Px2=2\dfrac{\partial^2 P}{\partial x^2}=-2

2Pxy=2Pyx=1\dfrac{\partial^2 P}{\partial x \partial y}=\dfrac{\partial^2 P}{\partial y \partial x}=-1


2Py2=2\dfrac{\partial^2 P}{\partial y^2}=-2

D(x,y)=2112=41=3D(x, y)=\begin{vmatrix} -2 & -1 \\ -1 & -2 \end{vmatrix}=4-1=3

2Px2(100,200)=2<0\dfrac{\partial^2 P}{\partial x^2}(100,200)=-2<0

D(100,200)=3>0D(100, 200)=3>0

It can be stated that (100,200)(100,200) is a relative maximum.


P(100,200)=400(100)+500(200)P(100,200)=400(100)+500(200)

(100)2(200)2100(200)20000=50000-(100)^2-(200)^2-100(200)-20000=50000

The Profit has the maximum with value of 5000050000 at x=100x=100 units and y=200y=200 units.


The Profit has no minimum.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS