P ( x , y ) = 400 x + 500 y − x 2 − y 2 − x y − 20000 P(x, y)=400x+500y-x^2-y^2-xy-20000 P ( x , y ) = 400 x + 500 y − x 2 − y 2 − x y − 20000
∂ P ∂ x = 400 − 2 x − y \dfrac{\partial P}{\partial x}=400-2x-y ∂ x ∂ P = 400 − 2 x − y
∂ P ∂ y = 500 − 2 y − x \dfrac{\partial P}{\partial y}=500-2y-x ∂ y ∂ P = 500 − 2 y − x Find the critical point(s)
{ ∂ P ∂ x = 0 ∂ P ∂ y = 0 = > { 400 − 2 x − y = 0 500 − 2 y − x = 0 \begin{cases}
\dfrac{\partial P}{\partial x}=0 \\
\\
\dfrac{\partial P}{\partial y}=0
\end{cases}=> \begin{cases}
400-2x-y=0 \\
\\
500-2y-x=0
\end{cases} ⎩ ⎨ ⎧ ∂ x ∂ P = 0 ∂ y ∂ P = 0 => ⎩ ⎨ ⎧ 400 − 2 x − y = 0 500 − 2 y − x = 0
= > { y = 400 − 2 x 500 − 800 + 4 x − x = 0 = > { x = 100 y = 200 => \begin{cases}
y=400-2x \\
\\
500-800+4x-x=0
\end{cases}=> \begin{cases}
x=100 \\
\\
y=200
\end{cases} => ⎩ ⎨ ⎧ y = 400 − 2 x 500 − 800 + 4 x − x = 0 => ⎩ ⎨ ⎧ x = 100 y = 200
∂ 2 P ∂ x 2 = − 2 \dfrac{\partial^2 P}{\partial x^2}=-2 ∂ x 2 ∂ 2 P = − 2
∂ 2 P ∂ x ∂ y = ∂ 2 P ∂ y ∂ x = − 1 \dfrac{\partial^2 P}{\partial x \partial y}=\dfrac{\partial^2 P}{\partial y \partial x}=-1 ∂ x ∂ y ∂ 2 P = ∂ y ∂ x ∂ 2 P = − 1
∂ 2 P ∂ y 2 = − 2 \dfrac{\partial^2 P}{\partial y^2}=-2 ∂ y 2 ∂ 2 P = − 2
D ( x , y ) = ∣ − 2 − 1 − 1 − 2 ∣ = 4 − 1 = 3 D(x, y)=\begin{vmatrix}
-2 & -1 \\
-1 & -2
\end{vmatrix}=4-1=3 D ( x , y ) = ∣ ∣ − 2 − 1 − 1 − 2 ∣ ∣ = 4 − 1 = 3
∂ 2 P ∂ x 2 ( 100 , 200 ) = − 2 < 0 \dfrac{\partial^2 P}{\partial x^2}(100,200)=-2<0 ∂ x 2 ∂ 2 P ( 100 , 200 ) = − 2 < 0
D ( 100 , 200 ) = 3 > 0 D(100, 200)=3>0 D ( 100 , 200 ) = 3 > 0 It can be stated that ( 100 , 200 ) (100,200) ( 100 , 200 ) is a relative maximum.
P ( 100 , 200 ) = 400 ( 100 ) + 500 ( 200 ) P(100,200)=400(100)+500(200) P ( 100 , 200 ) = 400 ( 100 ) + 500 ( 200 )
− ( 100 ) 2 − ( 200 ) 2 − 100 ( 200 ) − 20000 = 50000 -(100)^2-(200)^2-100(200)-20000=50000 − ( 100 ) 2 − ( 200 ) 2 − 100 ( 200 ) − 20000 = 50000
The Profit has the maximum with value of 50000 50000 50000 at x = 100 x=100 x = 100 units and y = 200 y=200 y = 200 units.
The Profit has no minimum.
Comments