Question #256086

A cellular phone company has the following production function for a smart phone: p(x, y) =

50x

2

3 y

1

3 where p is the number of units produced with x units of labor and y units of capital. a)

Find the number of units produced with 125 units of labor and 64 units of capital. b) Find the

marginal productivities (Hints: Partial derivatives). c) Evaluate the marginal productivities at

x = 125 and y = 64.



1
Expert's answer
2021-10-27T11:28:15-0400

Solution:

Let the production function be p(x,y)=50x2/3y1/3p(x,y)=50x^{2/3}y^{1/3}

(a)

p(125,64)=50(125)2/3(64)1/3=50(25)(4)=5000 unitsp(125,64)=50(125)^{2/3}(64)^{1/3} \\ =50(25)(4) \\=5000\ units

(b)

Marginal productivity of labor=px=px=\dfrac{\partial p}{\partial x}=p_x

=5023x1/3y1/3=100y1/33x1/3=50\cdot\dfrac23x^{-1/3}y^{1/3}=\dfrac{100y^{1/3}}{3x^{1/3}}

Marginal productivity of capital=py=py=\dfrac{\partial p}{\partial y}=p_y

=5013x2/3y2/3=50x2/33y2/3=50\cdot\dfrac13x^{2/3}y^{-2/3}=\dfrac{50x^{2/3}}{3y^{2/3}}

(c)

Marginal productivity of labor=px(125,64)=p_x(125,64)

=100(64)1/33(125)1/3=100×43×5=2623=\dfrac{100(64)^{1/3}}{3(125)^{1/3}} \\=\dfrac{100\times 4}{3\times 5} \\=26 \dfrac23

Marginal productivity of capital=py(125,64)=p_y(125,64)

=50(125)2/33(64)2/3=50×253×16=26124=\dfrac{50(125)^{2/3}}{3(64)^{2/3}} \\=\dfrac{50\times25}{3\times16} \\=26 \dfrac1{24}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS