Question #253739
Use the fact that lim
tà ƒ ƒ ¢ † ’0
e
t à ƒ ƒ ¢ ˆ ’ 1
t
= 1 to show from first principle that
d
dx(2e
2x à ƒ ƒ ¢ ˆ ’ e
à ƒ ƒ ¢ ˆ ’x + 5x) = 4e
2x + e
à ƒ ƒ ¢ ˆ ’x + 5.
[
1
Expert's answer
2021-10-20T12:52:59-0400

f(x)=limh0f(x+h)f(x)hf'(x)=\lim\limits_{h\to0}\dfrac{f(x+h)-f(x)}{h}

=limh02e2(x+h)+ex+h+5(x+h)2e2xex5xh==\lim\limits_{h\to0}\dfrac{2e^{2(x+h)}+e^{x+h}+5(x+h)-2e^{2x}-e^x-5x}{h}=

=limh02e2x(e2h1)h+limh0ex(eh1)h+limh05hh=\lim\limits_{h\to0}\dfrac{2e^{2x}(e^{2h}-1)}{h}+\lim\limits_{h\to0}\dfrac{e^{x}(e^{h}-1)}{h}+\lim\limits_{h\to0}\dfrac{5h}{h}


=4e2xlimh0e2h12h+exlimh0eh1h+5limh0hh=4e^{2x}\lim\limits_{h\to0}\dfrac{e^{2h}-1}{2h}+e^x\lim\limits_{h\to0}\dfrac{e^h-1}{h}+5\lim\limits_{h\to0}\dfrac{h}{h}

=4e2x(1)+ex(1)+5(1)=4e^{2x}(1)+e^x(1)+5(1)

=4e2x+ex+5=4e^{2x}+e^x+5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS