2021-10-19T19:13:11-04:00
Use the fact that lim
tà ¢ 0
e
t à ¢ 1
t
= 1 to show from first principle that
d
dx(2e
2x à ¢ e
à ¢ x + 5x) = 4e
2x + e
à ¢ x + 5.
[
1
2021-10-20T12:52:59-0400
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim\limits_{h\to0}\dfrac{f(x+h)-f(x)}{h} f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x )
= lim h → 0 2 e 2 ( x + h ) + e x + h + 5 ( x + h ) − 2 e 2 x − e x − 5 x h = =\lim\limits_{h\to0}\dfrac{2e^{2(x+h)}+e^{x+h}+5(x+h)-2e^{2x}-e^x-5x}{h}= = h → 0 lim h 2 e 2 ( x + h ) + e x + h + 5 ( x + h ) − 2 e 2 x − e x − 5 x =
= lim h → 0 2 e 2 x ( e 2 h − 1 ) h + lim h → 0 e x ( e h − 1 ) h + lim h → 0 5 h h =\lim\limits_{h\to0}\dfrac{2e^{2x}(e^{2h}-1)}{h}+\lim\limits_{h\to0}\dfrac{e^{x}(e^{h}-1)}{h}+\lim\limits_{h\to0}\dfrac{5h}{h} = h → 0 lim h 2 e 2 x ( e 2 h − 1 ) + h → 0 lim h e x ( e h − 1 ) + h → 0 lim h 5 h
= 4 e 2 x lim h → 0 e 2 h − 1 2 h + e x lim h → 0 e h − 1 h + 5 lim h → 0 h h =4e^{2x}\lim\limits_{h\to0}\dfrac{e^{2h}-1}{2h}+e^x\lim\limits_{h\to0}\dfrac{e^h-1}{h}+5\lim\limits_{h\to0}\dfrac{h}{h} = 4 e 2 x h → 0 lim 2 h e 2 h − 1 + e x h → 0 lim h e h − 1 + 5 h → 0 lim h h
= 4 e 2 x ( 1 ) + e x ( 1 ) + 5 ( 1 ) =4e^{2x}(1)+e^x(1)+5(1) = 4 e 2 x ( 1 ) + e x ( 1 ) + 5 ( 1 )
= 4 e 2 x + e x + 5 =4e^{2x}+e^x+5 = 4 e 2 x + e x + 5
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments