limit f(x) = L as x-->a
For every E>0 there exists Delta_E such that
L-E < f(x) < L+E when a-Delta_E < x < a+Delta_E
Working backwards:
If
16-E < 10-2x < 16+E
Then
6−E<−2x<6+E(1/2)E−3>x>(−1/2)E−3−3+(1/2)E>x>−3−(1/2)E−3−(1/2)E<x<−3+(1/2)E−3−E/2<x<−3+E/2
For E>0, Let Delta_E = E/2
When -3-Delta_E < x < -3+Delta_E
−3−E/2<x<−3+E/2−6−E<2x<−6+EE+6>−2x>6−EE+16>10−2x>16−EE+16>f(x)>16−E
Comments