Question #253733
Use the precise definition of a limit (à ƒ ƒ Ž µ à ƒ ƒ ¢ ˆ ’ à ƒ ƒ Ž ´ method) to show that
limxà ƒ ƒ ¢ † ’a
x
2 à ƒ ƒ ¢ ˆ ’ 2ax = à ƒ ƒ ¢ ˆ ’a
2
.
1
Expert's answer
2021-10-20T17:30:11-0400

limit f(x) = L as x-->a

For every E>0 there exists Delta_E such that

L-E < f(x) < L+E when a-Delta_E < x < a+Delta_E



Working backwards:

If

16-E < 10-2x < 16+E

Then

6E<2x<6+E(1/2)E3>x>(1/2)E33+(1/2)E>x>3(1/2)E3(1/2)E<x<3+(1/2)E3E/2<x<3+E/26-E < -2x < 6+E\\ (1/2)E - 3 > x > (-1/2)E - 3\\ -3 + (1/2)E > x > -3 - (1/2)E\\ -3 - (1/2)E < x < -3 + (1/2)E\\ -3 - E/2 < x < -3 + E/2\\

For E>0, Let Delta_E = E/2


When -3-Delta_E < x < -3+Delta_E


3E/2<x<3+E/26E<2x<6+EE+6>2x>6EE+16>102x>16EE+16>f(x)>16E-3-E/2 < x < -3 + E/2\\ -6 - E < 2x < -6 + E\\ E+6 > -2x > 6-E\\ E+16 > 10-2x > 16-E\\ E+16 > f(x) > 16-E\\



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS