f(x)=∣2x−10∣+2 a)
x→5−limf(x)=x→5−lim(∣2x−10∣+2)
=x→5−lim(10−2x+2)=12−2(5)=2
x→5+limf(x)=x→5+lim(∣2x−10∣+2)
=x→5+lim(2x−10+2)=2(5)−8=2 Then
x→5−limf(x)=2=x→5+limf(x)=>x→5limf(x)=2
f(5)=∣2(5)−10∣+2=0+2=2 We have
x→5limf(x)=2=f(5) Therefore the function f(x) is continuous at x=5.
b)
f(5)=∣2(5)−10∣+2=0+2=2
h→0−limhf(5+h)−f(5)=h→0−limh∣2(5+h)−10∣+2−2
=h→0−limh2∣h∣=h→0−limh−2h=−2
h→0+limhf(5+h)−f(5)=h→0+limh∣2(5+h)−10∣+2−2
=h→0+limh2∣h∣=h→0+limh2h=2 Since
h→0−limhf(5+h)−f(5)=−2
=2=h→0+limhf(5+h)−f(5), then h→0limhf(5+h)−f(5) does not exist.
Therefore the function f(x) is not differentiable at x=5.
Comments
Leave a comment