Answer to Question #253735 in Calculus for Question

Question #253735
Let f(x) = |2x à ƒ ƒ ¢ ˆ ’ 10| + 2 .
a) Show that f is continuous at x = 5. [8]
b) Show that f is not differentiable at x = 5. [6]
1
Expert's answer
2021-10-20T11:04:57-0400
f(x)=2x10+2f(x) = |2x-10| + 2

a)

limx5f(x)=limx5(2x10+2)\lim\limits_{x\to5^-}f(x)=\lim\limits_{x\to5^-}(|2x-10| + 2 )

=limx5(102x+2)=122(5)=2=\lim\limits_{x\to5^-}(10-2x + 2 )=12-2(5)=2

limx5+f(x)=limx5+(2x10+2)\lim\limits_{x\to5^+}f(x)=\lim\limits_{x\to5^+}(|2x-10| + 2 )

=limx5+(2x10+2)=2(5)8=2=\lim\limits_{x\to5^+}(2x-10 + 2 )=2(5)-8=2

Then


limx5f(x)=2=limx5+f(x)=>limx5f(x)=2\lim\limits_{x\to5^-}f(x)=2=\lim\limits_{x\to5^+}f(x)=>\lim\limits_{x\to5}f(x)=2

f(5)=2(5)10+2=0+2=2f(5)=|2(5)-10|+2=0+2=2

We have


limx5f(x)=2=f(5)\lim\limits_{x\to5}f(x)=2=f(5)

Therefore the function f(x)f(x) is continuous at x=5.x=5.


b)


f(5)=2(5)10+2=0+2=2f(5)=|2(5)-10|+2=0+2=2


limh0f(5+h)f(5)h=limh02(5+h)10+22h\lim\limits_{h\to0^-}\dfrac{f(5+h)-f(5)}{h}=\lim\limits_{h\to0^-}\dfrac{|2(5+h)-10|+2-2}{h}

=limh02hh=limh02hh=2=\lim\limits_{h\to0^-}\dfrac{2|h|}{h}=\lim\limits_{h\to0^-}\dfrac{-2h}{h}=-2



limh0+f(5+h)f(5)h=limh0+2(5+h)10+22h\lim\limits_{h\to0^+}\dfrac{f(5+h)-f(5)}{h}=\lim\limits_{h\to0^+}\dfrac{|2(5+h)-10|+2-2}{h}

=limh0+2hh=limh0+2hh=2=\lim\limits_{h\to0^+}\dfrac{2|h|}{h}=\lim\limits_{h\to0^+}\dfrac{2h}{h}=2

Since

limh0f(5+h)f(5)h=2\lim\limits_{h\to0^-}\dfrac{f(5+h)-f(5)}{h}=-2

2=limh0+f(5+h)f(5)h,\not=2=\lim\limits_{h\to0^+}\dfrac{f(5+h)-f(5)}{h},

then limh0f(5+h)f(5)h\lim\limits_{h\to0}\dfrac{f(5+h)-f(5)}{h} does not exist.

Therefore the function f(x)f(x) is not differentiable at x=5.x=5.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment