Answer to Question #253379 in Calculus for ugtgfghj

Question #253379

find the area bounded by the curve y=3x-x^3 and the line y=2


1
Expert's answer
2021-10-20T14:15:54-0400



Area enclosed:

(3×1)23(3xx3)dx01(3xx3)dx+30(3xx3)dx3[3x22x44]23[3x22x44]01+[3x22x44]303[92946+4][32140+0]+(00)(9294)31454+94154 sq.units(3\times1)-\int_{-2}^{-\sqrt{3}}(3x-x^3)dx-\int^1_0(3x-x^3)dx+|\int^0_{-\sqrt{3}}(3x-x^3)dx|\\ \Rightarrow3-[\frac{3x^2}{2}-\frac{x^4}{4}]^{-\sqrt{3}}_{-2}-[\frac{3x^2}{2}-\frac{x^4}{4}]^{1}_{0}+|[\frac{3x^2}{2}-\frac{x^4}{4}]_{-\sqrt{3}}^{0}|\\ \Rightarrow3-[\frac{9}{2}-\frac{9}{4}-6+4]-[\frac{3}{2}-\frac{1}{4}-0+0]+|(0-0)-(\frac{9}{2}-\frac{9}{4})|\\ \Rightarrow 3-\frac{1}{4}-\frac{5}{4}+\frac{9}{4}\\ \Rightarrow \frac{15}{4} \ sq. units



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment