find the area bounded by the curve y=3x-x^3 and the line y=2
Area enclosed:
"(3\\times1)-\\int_{-2}^{-\\sqrt{3}}(3x-x^3)dx-\\int^1_0(3x-x^3)dx+|\\int^0_{-\\sqrt{3}}(3x-x^3)dx|\\\\\n\\Rightarrow3-[\\frac{3x^2}{2}-\\frac{x^4}{4}]^{-\\sqrt{3}}_{-2}-[\\frac{3x^2}{2}-\\frac{x^4}{4}]^{1}_{0}+|[\\frac{3x^2}{2}-\\frac{x^4}{4}]_{-\\sqrt{3}}^{0}|\\\\\n\\Rightarrow3-[\\frac{9}{2}-\\frac{9}{4}-6+4]-[\\frac{3}{2}-\\frac{1}{4}-0+0]+|(0-0)-(\\frac{9}{2}-\\frac{9}{4})|\\\\\n\\Rightarrow 3-\\frac{1}{4}-\\frac{5}{4}+\\frac{9}{4}\\\\\n\\Rightarrow \\frac{15}{4} \\ sq. units"
Comments
Leave a comment