Let us verify using the definition of limit (with "\\varepsilon" and "\\delta" ) that "\\lim\\limits_{ x\u21921} (\\frac{1}{2} |x \u2212 1| + 3) = 3." Let "\\varepsilon > 0" be arbitrary. Put "\\delta=\\varepsilon." Then for each "\\varepsilon > 0" there exists "\\delta>0" such that if "|x-1|<\\delta" then "|(\\frac{1}{2} |x \u2212 1| + 3) - 3|=|\\frac{1}{2} |x \u2212 1||=\\frac{1}{2} |x \u2212 1|<\\frac{1}{2}\\delta=\\frac{1}{2}\\varepsilon<\\varepsilon." Therefore,
"\\lim\\limits_{ x\u21921} (\\frac{1}{2} |x \u2212 1| + 3) = 3."
Comments
Leave a comment