Answer to Question #251981 in Calculus for Ishmael Rashid

Question #251981

Question 1

Solve the following equation

a) 2e^2x−1 + 5e^x2= 0

b) 2^4x + 2^2x−1 > 2

[8,6]

Question 2

Let f : (−∞, 2] → R be given by

f(x) = √2 − x

a) Show that f is injective.

b) Determine im(f).

c) Find a left inverse g : R → (−∞, 2] of f.

[7,6,5]


Question 3

Let f : Z → Z be given by

f(z) = (2z − 5, if z ≥ 0;

(z + 5, if z < 0.

a) Is f an injective function?

b) Let u ∈ Z, u ≤ 5. show that u ∈ im(f).

c) Let v ∈ Z, v > 5, Show that v ∈ im(f) if and only if v + 5 is even .

[5,6,6]



1
Expert's answer
2021-10-18T13:05:02-0400

Solution.

Question 1

a)

equation 2e2x1+5ex2=02e^{2x-1}+5e^{x^2}=0 has not real roots because af(x)>0,a>0,a1a^{f(x)}>0, a>0, a\neq1 for all x.

b)

24x+22x1>22^{4x}+2^{2x-1}>2

224x+22x22>02•2^{4x}+2^{2x}-2•2>0

Let be t=22x,t=2^{2x}, then

2t2+t4>02t^{2}+t-4>0

From here t<1334,t<\frac{-1-\sqrt{33}}{4}, and t>1+334.t>\frac{-1+\sqrt{33}}{4}.

22x<13342^{2x}<\frac{-1-\sqrt{33}}{4} has not real solutions.

22x>1+334,2^{2x}>\frac{-1+\sqrt{33}}{4},

2x>log21+334,2x>\log_2{\frac{-1+\sqrt{33}}{4}},

x>12log21+334.x>\frac{1}{2}\log_2\frac{-1+\sqrt{33}}{4}.

Question 2

f:(,2]R,f(x)=2xf:(-\infty,2]\to R, f(x)=\sqrt{2-x}

a) each x from (,2)(-\infty,2) has y to correspond, for a example, f(0)=2,\sqrt{2}, f(-2)=2, f(-7)=3.



So, f(x) is injective function.

b) as x(,2]x\in (-\infty,2] f(x) is an increasing function in the domain

x,f(x)+x\to -\infty, f(x)\to +\infty

So, Im(f)=+.+\infty.

c) find a left inverse of f:

f2=2x,x=2f2,g(x)=x2+2,x[0,+).f^2=2-x,\newline x=2-f^2,\newline g(x)=-x^2+2, x\in [0,+\infty).



Question 3

f:ZZ,f(z)=2z5,ifz0;z+5,ifz<0.f:Z\to Z, f(z)=2z-5, if z\geq0; z+5, if z<0.

a) f(z)=0,z=2.5,or z=5.f(z)=0, z=2.5, \text{or } z=-5.

So, f(z) is not injective.

b) such as z5,z\leq 5, we have

z(,5]    u5z\in (-\infty,5]\implies u\leq 5 \in im(f).

c) vZ,v>5.v\in Z,v>5.

Let be v=7,v=7, 7+5=12, 12 is even.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment