a) 2 ⋅ e 2 x − 1 + 5 ⋅ e x − 2 = 0 2\cdot e^{2x-1}+5\cdot e^x-2=0 2 ⋅ e 2 x − 1 + 5 ⋅ e x − 2 = 0
e x = t e^x=t e x = t - new unknown
2 e ⋅ t 2 + 5 ⋅ t − 2 = 0 \frac{2}{e}\cdot t^2+5\cdot t-2=0 e 2 ⋅ t 2 + 5 ⋅ t − 2 = 0
D = 25 + 16 e D=25+\frac{16}{e} D = 25 + e 16
t 1 = − 5 − 25 + 16 e 4 e t_1=\frac{-5-\sqrt{25+\frac{16}{e}}}{\frac{4}{e}} t 1 = e 4 − 5 − 25 + e 16
t 2 = − 5 + 25 + 16 e 4 e t_2=\frac{-5+\sqrt{25+\frac{16}{e}}}{\frac{4}{e}} t 2 = e 4 − 5 + 25 + e 16
1)e x = t 1 e^x=t_1 e x = t 1 - no solutions, because t 1 < 0 t_1<0 t 1 < 0
2) e x = t 2 . x = l n ( − 5 + 25 + 16 e 4 e ) e^x=t_2.\space x=ln\left( \frac{-5+\sqrt{25+\frac{16}{e}}}{\frac{4}{e}} \right) e x = t 2 . x = l n ( e 4 − 5 + 25 + e 16 )
Answer: x = l n ( − 5 + 25 + 16 e 4 e ) x=ln\left( \frac{-5+\sqrt{25+\frac{16}{e}}}{\frac{4}{e}} \right) x = l n ( e 4 − 5 + 25 + e 16 )
b)
2 4 x + 2 2 x − 1 > 2 2 2 x = t ; t 2 + 1 2 t − 2 > 0 ; 2^{4x}+2^{2x-1}>2\\
2^{2x}=t;\\
t^2+\frac{1}{2}t-2>0; 2 4 x + 2 2 x − 1 > 2 2 2 x = t ; t 2 + 2 1 t − 2 > 0 ;
t 1 = − 1 − 33 4 ; t_1=\frac{-1-\sqrt{33}}{4}; t 1 = 4 − 1 − 33 ;
t 2 = − 1 + 33 4 ; t_2=\frac{-1+\sqrt{33}}{4}; t 2 = 4 − 1 + 33 ;
( t − t 1 ) ( t − t 2 ) > 0 (t-t_1)(t-t_2)>0 ( t − t 1 ) ( t − t 2 ) > 0
( t < t 1 ) ∨ ( t > t 2 ) (t<t_1)\vee(t>t_2)\\ ( t < t 1 ) ∨ ( t > t 2 )
t < t 1 t<t_1 t < t 1 -impossible, because t 1 < 0 t_1<0 t 1 < 0
t > t 2 ; 2 2 x > − 1 + 33 4 ; 2 x > l o g 2 ( − 1 + 33 4 ) x > 1 2 ⋅ l o g 2 ( − 1 + 33 4 ) a n s w e r : x ∈ ( 1 2 ⋅ l o g 2 ( − 1 + 33 4 ) . ∞ ) t>t_2;\\
2^{2x}>\frac{-1+\sqrt{33}}{4};\\
2x>log_2\left( \frac{-1+\sqrt{33}}{4} \right)\\
x>\frac{1}{2}\cdot log_2\left( \frac{-1+\sqrt{33}}{4} \right)\\
answer:\space x\in \left( \frac{1}{2}\cdot log_2\left( \frac{-1+\sqrt{33}}{4} \right).\infty \right) t > t 2 ; 2 2 x > 4 − 1 + 33 ; 2 x > l o g 2 ( 4 − 1 + 33 ) x > 2 1 ⋅ l o g 2 ( 4 − 1 + 33 ) an s w er : x ∈ ( 2 1 ⋅ l o g 2 ( 4 − 1 + 33 ) .∞ )
Question 2
f ( x ) = 2 − x , d o m ( f ) = ( − ∞ , 2 ] f(x)=\sqrt{2-x},\space dom(f)=(-\infty,2] f ( x ) = 2 − x , d o m ( f ) = ( − ∞ , 2 ]
f(x) is monotone increasing because f 1 ( x ) = 2 − x f_1(x)=2-x f 1 ( x ) = 2 − x is monotone decreasing and
f 2 ( y ) = y f_2(y)=\sqrt{y} f 2 ( y ) = y is monotone increasing , therefore f ( x ) = f 2 ( f 1 ( x ) ) f(x)=f_2\left(f_1(x)\right) f ( x ) = f 2 ( f 1 ( x ) ) is monotone decreasing as composition of monotone functions.
Monotine i funcrion f is bijection from dom(f) on im(f).
f ( ( − ∞ , 2 ] ) = [ f ( 2 ) , l i m x → − ∞ f ( x ) = [ 0. ∞ ) f((-\infty,2])=[f(2), lim_{x\rarr -\infty}f(x)=[0.\infty) f (( − ∞ , 2 ]) = [ f ( 2 ) , l i m x → − ∞ f ( x ) = [ 0.∞ )
so im(f)=[ 0. ∞ ) [0.\infty) [ 0.∞ )
Inverse function g : R → [ − ∞ , 2 ) g:R\rarr[-\infty,2) g : R → [ − ∞ , 2 )
has dom(g)=[ 0 , ∞ ) [0,\infty) [ 0 , ∞ ) and is determined by equation
f(y)=x, o r 2 − y = x or\space\sqrt{2-y}=x or 2 − y = x
therefore
y = 2 − x 2 y=2-x^2 y = 2 − x 2
We have g ( x ) = 2 − x 2 g(x)=2-x^2 g ( x ) = 2 − x 2
Question 3
f ( z ) = { 2 z − 5 z ≥ 0 z + 5 z < 0 f(z) = \begin{cases}
2z-5 &{z\ge 0} \\
z+5 &{z<0}
\end{cases} f ( z ) = { 2 z − 5 z + 5 z ≥ 0 z < 0
a) Function f(z) is not injective because
f(0)=f(-10)=-5 and this is counterexample to injectivity
b) Let u ∈ Z . u ≤ 5 u\in Z.u\le5 u ∈ Z . u ≤ 5
For proving that u ∈ i m ( f ) u\in im(f) u ∈ im ( f ) we must find solution for equation
f(z)=u
Let we search solution in region ( − ∞ , 0 ) (-\infty,0) ( − ∞ , 0 )
In this case the last equation has form z+5=u;
From it we have z=u-5 and this solution correct if u<5
Now let us consider the case u=5, we have f(5)=2 ⋅ 5 − 5 = 5 2\cdot 5-5=5 2 ⋅ 5 − 5 = 5 and eqution
f(z)=u has solution anywhere if u ≤ 5 u\le5 u ≤ 5 .
c) Let v ∈ Z, v > 5, Show that v ∈ im(f) if and only if v + 5 is even .
We consider two possibilities:
z+5=v,z<0 But in this case z+5<5<v and this case impossible
2.
2 z − 5 = v , z = v + 5 2 2z-5=v,\\
z=\frac{v+5}{2} 2 z − 5 = v , z = 2 v + 5
if v+5 is odd then this solution is not valid because z ∉ Z z\notin Z z ∈ / Z
Contrary if v+5 is even, i.e. v+5=2k,k ∈ Z , k > 5 k\in Z,k>5 k ∈ Z , k > 5
we have z=k- is correct solution of equation f(z)=v, because z=k>5>0
Comments