Question #251978

Question 1

Solve the following equation

a) 2e

2x−1 + 5e

x

2

= 0

b) 2

4x + 22x−1 > 2

[8,6]


Question 2

Let f : (−∞, 2] → R be given by

f(x) = √

2 − x

a) Show that f is injective.

b) Determine im(f).

c) Find a left inverse g : R → (−∞, 2] of f.

[7,6,5]


Question 3

Let f : Z → Z be given by

f(z) = (

2z − 5, if z ≥ 0;

z + 5, if z < 0.

a) Is f an injective function?

b) Let u ∈ Z, u ≤ 5. show that u ∈ im(f).

c) Let v ∈ Z, v > 5, Show that v ∈ im(f) if and only if v + 5 is even .

[5,6,6]


1
Expert's answer
2021-10-18T16:38:10-0400

a) 2e2x1+5ex2=02\cdot e^{2x-1}+5\cdot e^x-2=0

ex=te^x=t - new unknown

2et2+5t2=0\frac{2}{e}\cdot t^2+5\cdot t-2=0

D=25+16eD=25+\frac{16}{e}

t1=525+16e4et_1=\frac{-5-\sqrt{25+\frac{16}{e}}}{\frac{4}{e}}

t2=5+25+16e4et_2=\frac{-5+\sqrt{25+\frac{16}{e}}}{\frac{4}{e}}

1)ex=t1e^x=t_1 - no solutions, because t1<0t_1<0

2) ex=t2. x=ln(5+25+16e4e)e^x=t_2.\space x=ln\left( \frac{-5+\sqrt{25+\frac{16}{e}}}{\frac{4}{e}} \right)

Answer: x=ln(5+25+16e4e)x=ln\left( \frac{-5+\sqrt{25+\frac{16}{e}}}{\frac{4}{e}} \right)

b)

24x+22x1>222x=t;t2+12t2>0;2^{4x}+2^{2x-1}>2\\ 2^{2x}=t;\\ t^2+\frac{1}{2}t-2>0;

t1=1334;t_1=\frac{-1-\sqrt{33}}{4};

t2=1+334;t_2=\frac{-1+\sqrt{33}}{4};

(tt1)(tt2)>0(t-t_1)(t-t_2)>0

(t<t1)(t>t2)(t<t_1)\vee(t>t_2)\\

t<t1t<t_1 -impossible, because t1<0t_1<0

t>t2;22x>1+334;2x>log2(1+334)x>12log2(1+334)answer: x(12log2(1+334).)t>t_2;\\ 2^{2x}>\frac{-1+\sqrt{33}}{4};\\ 2x>log_2\left( \frac{-1+\sqrt{33}}{4} \right)\\ x>\frac{1}{2}\cdot log_2\left( \frac{-1+\sqrt{33}}{4} \right)\\ answer:\space x\in \left( \frac{1}{2}\cdot log_2\left( \frac{-1+\sqrt{33}}{4} \right).\infty \right)

Question 2

f(x)=2x, dom(f)=(,2]f(x)=\sqrt{2-x},\space dom(f)=(-\infty,2]

f(x) is monotone increasing because f1(x)=2xf_1(x)=2-x is monotone decreasing and

f2(y)=yf_2(y)=\sqrt{y} is monotone increasing , therefore f(x)=f2(f1(x))f(x)=f_2\left(f_1(x)\right) is monotone decreasing as composition of monotone functions.

Monotine i funcrion f is bijection from dom(f) on im(f).

f((,2])=[f(2),limxf(x)=[0.)f((-\infty,2])=[f(2), lim_{x\rarr -\infty}f(x)=[0.\infty)

so im(f)=[0.)[0.\infty)

Inverse function g:R[,2)g:R\rarr[-\infty,2)

has dom(g)=[0,)[0,\infty) and is determined by equation

f(y)=x, or 2y=xor\space\sqrt{2-y}=x

therefore

y=2x2y=2-x^2

We have g(x)=2x2g(x)=2-x^2

Question 3

f(z)={2z5z0z+5z<0f(z) = \begin{cases} 2z-5 &{z\ge 0} \\ z+5 &{z<0} \end{cases}

a) Function f(z) is not injective because

f(0)=f(-10)=-5 and this is counterexample to injectivity

b) Let uZ.u5u\in Z.u\le5

For proving that uim(f)u\in im(f) we must find solution for equation

f(z)=u

Let we search solution in region (,0)(-\infty,0)

In this case the last equation has form z+5=u;

From it we have z=u-5 and this solution correct if u<5

Now let us consider the case u=5, we have f(5)=255=52\cdot 5-5=5 and eqution

f(z)=u has solution anywhere if u5u\le5 .

c) Let v ∈ Z, v > 5, Show that v ∈ im(f) if and only if v + 5 is even .

We consider two possibilities:

  1. z+5=v,z<0

But in this case z+5<5<v and this case impossible

2.

2z5=v,z=v+522z-5=v,\\ z=\frac{v+5}{2}

if v+5 is odd then this solution is not valid because zZz\notin Z

Contrary if v+5 is even, i.e. v+5=2k,kZ,k>5k\in Z,k>5

we have z=k- is correct solution of equation f(z)=v, because z=k>5>0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS