Use Lagrange multipliers to find the maximum and minimum values of the function ( if they exist) subject to the specified constraint.
f(x,y) = 4x^2 + 9y^2 on the hyperbola xy = 6
"f_x=8x,f_y=18y"
"g_x=y,g_y=x"
"f_x=\\lambda g_x \\implies 8x=\\lambda y"
"f_y=\\lambda g_y \\implies 18y=\\lambda x"
"\\frac{4x}{9y}=\\frac{y}{x}\\implies 9y^2=4x^2"
"y=\\pm 2x\/3"
then:
"2x^2\/3=6\\implies x=\\pm 3"
solution:
"(3,2),(3,-2),(-3,2),(-3,-2)"
"f(3,2)=f(3,-2)=f(-3,2)=f(-3,-2)=72"
"f(x,y) = 4(6\/y)^2 + 9y^2"
if we take, for example, y =1we get:
"f(x,1)=153>72"
so,
f(3,2)=f(3,-2)=f(-3,2)=f(-3,-2)=72 are minimums
Comments
Leave a comment