Question #250179
show that ⠈ ‘ (-1)^(n+1)à —5à ·(7n+2) is condintionally convergent
1
Expert's answer
2021-10-12T15:42:10-0400

Since, given term is unclear, we assume it as n=0(1)n+157n+2\sum _{n=0}^{\infty \:}\frac{\left(-1\right)^{n+1}\cdot \:5}{7n+2}

Solution:

n=0(1)n+157n+2\sum _{n=0}^{\infty \:}\frac{\left(-1\right)^{n+1}\cdot \:5}{7n+2}

=5n=0(1)n+17n+2=5\cdot \sum _{n=0}^{\infty \:}\frac{\left(-1\right)^{n+1}}{7n+2}

=5n=0(1)n(1)17n+2=5\cdot \sum _{n=0}^{\infty \:}\frac{\left(-1\right)^n\left(-1\right)^1}{7n+2}

=5(1)n=0(1)n7n+2=5\left(-1\right)\cdot \sum _{n=0}^{\infty \:}\frac{\left(-1\right)^n}{7n+2}

Apply alternating series test

(a) To check limnbn=0\lim_{n\rightarrow \infty} b_n=0

limn17n+2=1=0\lim_{n\rightarrow \infty} \dfrac{1}{7n+2}=\dfrac1{\infty}=0

(b) And to check bn+1bnb_{n+1}\le b_n

bn=17n+2,bn+1=17(n+1)+2=17n+9b_n=\dfrac1{7n+2}, b_{n+1}=\dfrac1{7(n+1)+2}=\dfrac1{7n+9}

Clearly, 17n+917n+2\dfrac1{7n+9}\le \dfrac1{7n+2}

Thus, bn+1bnb_{n+1}\le b_n

Hence, by using alternating series test

n=0(1)n+157n+2\sum _{n=0}^{\infty \:}\frac{\left(-1\right)^{n+1}\cdot \:5}{7n+2} =5(1)converges=5\left(-1\right)\mathrm{converges}

=converges=\mathrm{converges}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS