Question #249926

General Application of Derivatives. Draw the necessary figure and indicate the dimension given.


  1. A triangular corner lot has perpendicular sides of lengths 120 m and 160 m. Find the area of the largest rectangular building that can be constructed on a lot with sides parallel to the streets.
1
Expert's answer
2021-10-15T09:55:51-0400


Let x be the length of a rectangle parallel to the 160 m side

    y be the height of a rectangle parallel to the 120 m side.


As we noticed, If the rectangular building was placed in a triangular lot, we can have 3 similar triangles. The given triangle and the 2 triangles on both sides. A similar triangle has the following ratio:


y160mx=120m160m=3m4my160mx=3m4m4y=3(160mx)4y=480m3xy=120m3mx4m\begin{aligned} &\frac{y}{160 m-x}=\frac{120 m}{160 m}=\frac{3 m}{4 m} \\ \Rightarrow &\frac{y}{160 m-x}=\frac{3 m}{4 m} \\ \Rightarrow &4 y=3(160 m-x) \\ \Rightarrow&4 y=480 m-3 x \\ \Rightarrow&y=120 m-\frac{3 m x}{4 m} \end{aligned}

Since A = xy 


Then,A=x(1203x4)=120x3x24Get the maximum value of AdAdx=1203x2=01203x2=03x2=120x=80From y=1203x4,substitute the value of x.y=1203(80)4y=12060y=60Since x=80 and y=60Then, \quad A=x\left(120-\frac{3 x}{4}\right) \\ =120 x-\frac{3 x^{2}}{4}\\ Get \ the \ maximum \ value \ of \ A \\ \frac{dA}{ d x}=120-\frac{3 x}{2}=0\\ \begin{aligned} &120-\frac{3 x}{2}=0 \\ \Rightarrow&\frac{3 x}{2}=120 \\ &x=80 \end{aligned}\\ From \ y=120-\frac{3 x}{4} , substitute \ the \ value \ of \ \mathrm{x} .\\ \begin{aligned} &y=120-\frac{3(80)}{4} \\ &y=120-60 \\ &y=60 \end{aligned}\\ Since \ x=80 \ and \ y=60

Therefore the dimension of the largest rectangular building that can be constructed on the triangular lot with the side parallel to the street is 80m by 60m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS