Question #240498

Show that |∫−2𝜋2𝜋 𝑥 2 sin8 (𝑒 𝑥 ) 𝑑𝑥| ≤ (16𝜋 3 )/3


1
Expert's answer
2021-09-27T04:10:59-0400

If f is integrable on [a,b], then |f| is integrable on [a,b] and


abf(x)dxabfdx|\int^b_a f(x)dx|\le \int^b_a |f|dx


So:

2π2πx2sin8(ex)dx2π2πx2sin8(ex)dx=|\int^{2\pi}_{-2\pi} x^2sin^8(e^x)dx|\le \int^{2\pi}_{-2\pi} |x^2sin^8(e^x)|dx=

=2π2πx2sin8(ex)dx2π2πx2dx=2π2πx2dx=16π33=\int^{2\pi}_{-2\pi} |x^2||sin^8(e^x)|dx\le \int^{2\pi}_{-2\pi} |x^2|dx=\int^{2\pi}_{-2\pi} x^2dx=\frac{16\pi^3}{3}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS