Let y = 0 y=0 y = 0 , then:
11 z = 3 ⟹ z = 3 / 11 11z=3\implies z=3/11 11 z = 3 ⟹ z = 3/11
x = 8 / 11 x=8/11 x = 8/11
The direction vector of this line:
d ‾ = n ‾ 1 × n ‾ 2 = ∣ i j k 1 1 1 − 1 2 10 ∣ = 8 i − 11 j + 3 k \overline{d}=\overline{n}_1\times \overline{n}_2=\begin{vmatrix}
i & j&k \\
1 & 1&1\\
-1&2&10
\end{vmatrix}=8i-11j+3k d = n 1 × n 2 = ∣ ∣ i 1 − 1 j 1 2 k 1 10 ∣ ∣ = 8 i − 11 j + 3 k
The equation of the line:
x − 8 / 11 8 = y − 11 = z − 3 / 11 3 \frac{x-8/11}{8}=\frac{y}{-11}=\frac{z-3/11}{3} 8 x − 8/11 = − 11 y = 3 z − 3/11
Parametric equation of the line:
{ x = p 1 t + x 0 y = p 2 t + y 0 z = p 3 t + z 0 \begin{cases}
x=p_1t+x_0 \\
y=p_2t+y_0\\
z=p_3t+z_0
\end{cases} ⎩ ⎨ ⎧ x = p 1 t + x 0 y = p 2 t + y 0 z = p 3 t + z 0
{ x = 8 t + 8 / 11 y = − 11 t z = 3 t + 3 / 11 \begin{cases}
x=8t+8/11 \\
y=-11t\\
z=3t+3/11
\end{cases} ⎩ ⎨ ⎧ x = 8 t + 8/11 y = − 11 t z = 3 t + 3/11
∣ d ‾ ∣ = ∣ n ‾ 1 × n ‾ 2 ∣ = 8 2 + 1 1 2 + 3 2 = 194 |\overline{d}|=|\overline{n}_1\times \overline{n}_2|=\sqrt{8^2+11^2+3^2}=\sqrt{194} ∣ d ∣ = ∣ n 1 × n 2 ∣ = 8 2 + 1 1 2 + 3 2 = 194
direction of the line:
c o s α = 8 / 194 cos\alpha=8/\sqrt{194} cos α = 8/ 194
c o s β = − 11 / 194 cos\beta=-11/\sqrt{194} cos β = − 11/ 194
c o s γ = 3 / 194 cos\gamma=3/\sqrt{194} cos γ = 3/ 194
Comments