Question #240125

a) Give parametric equation (point-direction form) of the line which lies on both of the planes:

x + y + z = 1 and −x + 2y + 10z = 2. What is the direction d of this line?

b) Let n1 and n2 be the normal vectors to the two given planes. Without actual computation,

describe the relationship between d and n1 × n2.


1
Expert's answer
2021-09-28T14:38:13-0400

Let y=0y=0 , then:

11z=3    z=3/1111z=3\implies z=3/11

x=8/11x=8/11


The direction vector of this line:

d=n1×n2=ijk1111210=8i11j+3k\overline{d}=\overline{n}_1\times \overline{n}_2=\begin{vmatrix} i & j&k \\ 1 & 1&1\\ -1&2&10 \end{vmatrix}=8i-11j+3k


The equation of the line:

x8/118=y11=z3/113\frac{x-8/11}{8}=\frac{y}{-11}=\frac{z-3/11}{3}


Parametric equation of the line:

{x=p1t+x0y=p2t+y0z=p3t+z0\begin{cases} x=p_1t+x_0 \\ y=p_2t+y_0\\ z=p_3t+z_0 \end{cases}


{x=8t+8/11y=11tz=3t+3/11\begin{cases} x=8t+8/11 \\ y=-11t\\ z=3t+3/11 \end{cases}


d=n1×n2=82+112+32=194|\overline{d}|=|\overline{n}_1\times \overline{n}_2|=\sqrt{8^2+11^2+3^2}=\sqrt{194}

direction of the line:

cosα=8/194cos\alpha=8/\sqrt{194}

cosβ=11/194cos\beta=-11/\sqrt{194}

cosγ=3/194cos\gamma=3/\sqrt{194}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS