a) Give parametric equation (point-direction form) of the line which lies on both of the planes:
x + y + z = 1 and −x + 2y + 10z = 2. What is the direction d of this line?
b) Let n1 and n2 be the normal vectors to the two given planes. Without actual computation,
describe the relationship between d and n1 × n2.
Let "y=0" , then:
"11z=3\\implies z=3\/11"
"x=8\/11"
The direction vector of this line:
"\\overline{d}=\\overline{n}_1\\times \\overline{n}_2=\\begin{vmatrix}\n i & j&k \\\\\n 1 & 1&1\\\\\n-1&2&10\n\\end{vmatrix}=8i-11j+3k"
The equation of the line:
"\\frac{x-8\/11}{8}=\\frac{y}{-11}=\\frac{z-3\/11}{3}"
Parametric equation of the line:
"\\begin{cases}\n x=p_1t+x_0 \\\\\n y=p_2t+y_0\\\\\n z=p_3t+z_0\n\\end{cases}"
"\\begin{cases}\n x=8t+8\/11 \\\\\n y=-11t\\\\\n z=3t+3\/11\n\\end{cases}"
"|\\overline{d}|=|\\overline{n}_1\\times \\overline{n}_2|=\\sqrt{8^2+11^2+3^2}=\\sqrt{194}"
direction of the line:
"cos\\alpha=8\/\\sqrt{194}"
"cos\\beta=-11\/\\sqrt{194}"
"cos\\gamma=3\/\\sqrt{194}"
Comments
Leave a comment