1.
F ( z ) = ∫ 0 z t + s i n t d t F(z)=\int^z_0 \sqrt{t+sint}dt F ( z ) = ∫ 0 z t + s in t d t
F ′ ( z ) = z + s i n z F'(z)= \sqrt{z+sinz} F ′ ( z ) = z + s in z
∫ x 1 t + s i n t d t = ∫ 0 1 t + s i n t d t − ∫ 0 x t + s i n t d t = F ( 1 ) − F ( x ) \int^1_x \sqrt{t+sint}dt=\int^1_0 \sqrt{t+sint}dt-\int^x_0 \sqrt{t+sint}dt=F(1)-F(x) ∫ x 1 t + s in t d t = ∫ 0 1 t + s in t d t − ∫ 0 x t + s in t d t = F ( 1 ) − F ( x )
d d x ( F ( 1 ) − F ( x ) ) = F ′ ( 1 ) − F ′ ( x ) = 1 + s i n 1 − x + s i n x \frac{d}{dx}(F(1)-F(x))=F'(1)-F'(x)=\sqrt{1+sin1}-\sqrt{x+sinx} d x d ( F ( 1 ) − F ( x )) = F ′ ( 1 ) − F ′ ( x ) = 1 + s in 1 − x + s in x
2.
F ( z ) = ∫ 0 z s i n 4 t d t F(z)=\int^z_0 sin^4 tdt F ( z ) = ∫ 0 z s i n 4 t d t
F ′ ( z ) = s i n 4 z F'(z)= sin^4 z F ′ ( z ) = s i n 4 z
∫ 2 x 3 x + 4 s i n 4 t d t = ∫ 0 3 x + 4 s i n 4 t d t − ∫ 0 2 x s i n 4 t d t = F ( 3 x + 4 ) − F ( 2 x ) \int^{3x+4}_{2x} sin^4 tdt=\int^{3x+4}_{0} sin^4 tdt-\int^{2x}_{0} sin^4 tdt=F(3x+4)-F(2x) ∫ 2 x 3 x + 4 s i n 4 t d t = ∫ 0 3 x + 4 s i n 4 t d t − ∫ 0 2 x s i n 4 t d t = F ( 3 x + 4 ) − F ( 2 x )
d d x ( F ( 3 x + 4 ) − F ( 2 x ) ) = 3 F ′ ( 3 x + 4 ) − 2 F ′ ( 2 x ) = \frac{d}{dx}(F(3x+4)-F(2x))=3F'(3x+4)-2F'(2x)= d x d ( F ( 3 x + 4 ) − F ( 2 x )) = 3 F ′ ( 3 x + 4 ) − 2 F ′ ( 2 x ) =
= 3 s i n 4 ( 3 x + 4 ) − 2 s i n 4 ( 2 x ) =3sin^4(3x+4)-2sin^4(2x) = 3 s i n 4 ( 3 x + 4 ) − 2 s i n 4 ( 2 x )
Comments