Question #220244
Supposes a flexible cable is suspended between two towers that are 200 feet apart forms a curve whose equation is y=75(e^x/150 + e^-x/150). Calculate the length of the cable.
1
Expert's answer
2021-07-26T17:54:52-0400
x1=100,x2=100x_1=-100, x_2=100

y=75(ex/150+ex/150)y=75(e^{x/150}+e^{-x/150})

y=12(ex/150ex/150)y'=\dfrac{1}{2}(e^{x/150}-e^{-x/150})

1+(y)2=1+(12(ex/150ex/150))21+(y')^2=1+(\dfrac{1}{2}(e^{x/150}-e^{-x/150}))^2

=(12(ex/150+ex/150))2=(\dfrac{1}{2}(e^{x/150}+e^{-x/150}))^2

L=1001001+(y)2dxL=\displaystyle\int_{-100}^{100}\sqrt{1+(y')^2}dx

=100100(12(ex/150+ex/150))2dx=\displaystyle\int_{-100}^{100}\sqrt{(\dfrac{1}{2}(e^{x/150}+e^{-x/150}))^2}dx


=10010012(ex/150+ex/150)dx=\displaystyle\int_{-100}^{100}\dfrac{1}{2}(e^{x/150}+e^{-x/150})dx

=2(12)0100(ex/150+ex/150)dx=2(\dfrac{1}{2})\displaystyle\int_{0}^{100}(e^{x/150}+e^{-x/150})dx

=150[ex/150ex/150]1000=150\big[e^{x/150}-e^{-x/150}\big]\begin{matrix} 100 \\ 0 \end{matrix}

=150(e100/150e100/150(11))=150(e^{100/150}-e^{-100/150}-(1-1))

=150(e2/3e2/3)215.148 m=150(e^{2/3}-e^{-2/3})\approx215.148\ m




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS