"y=75(e^{x\/150}+e^{-x\/150})"
"y'=\\dfrac{1}{2}(e^{x\/150}-e^{-x\/150})"
"1+(y')^2=1+(\\dfrac{1}{2}(e^{x\/150}-e^{-x\/150}))^2"
"=(\\dfrac{1}{2}(e^{x\/150}+e^{-x\/150}))^2"
"L=\\displaystyle\\int_{-100}^{100}\\sqrt{1+(y')^2}dx"
"=\\displaystyle\\int_{-100}^{100}\\sqrt{(\\dfrac{1}{2}(e^{x\/150}+e^{-x\/150}))^2}dx"
"=2(\\dfrac{1}{2})\\displaystyle\\int_{0}^{100}(e^{x\/150}+e^{-x\/150})dx"
"=150\\big[e^{x\/150}-e^{-x\/150}\\big]\\begin{matrix}\n 100 \\\\\n 0\n\\end{matrix}"
"=150(e^{100\/150}-e^{-100\/150}-(1-1))"
"=150(e^{2\/3}-e^{-2\/3})\\approx215.148\\ m"
Comments
Leave a comment