2021-07-24T03:09:03-04:00
Supposes a flexible cable is suspended between two towers that are 200 feet apart forms a curve whose equation is y=75(e^x/150 + e^-x/150). Calculate the length of the cable.
1
2021-07-26T17:54:52-0400
x 1 = − 100 , x 2 = 100 x_1=-100, x_2=100 x 1 = − 100 , x 2 = 100
y = 75 ( e x / 150 + e − x / 150 ) y=75(e^{x/150}+e^{-x/150}) y = 75 ( e x /150 + e − x /150 )
y ′ = 1 2 ( e x / 150 − e − x / 150 ) y'=\dfrac{1}{2}(e^{x/150}-e^{-x/150}) y ′ = 2 1 ( e x /150 − e − x /150 )
1 + ( y ′ ) 2 = 1 + ( 1 2 ( e x / 150 − e − x / 150 ) ) 2 1+(y')^2=1+(\dfrac{1}{2}(e^{x/150}-e^{-x/150}))^2 1 + ( y ′ ) 2 = 1 + ( 2 1 ( e x /150 − e − x /150 ) ) 2
= ( 1 2 ( e x / 150 + e − x / 150 ) ) 2 =(\dfrac{1}{2}(e^{x/150}+e^{-x/150}))^2 = ( 2 1 ( e x /150 + e − x /150 ) ) 2
L = ∫ − 100 100 1 + ( y ′ ) 2 d x L=\displaystyle\int_{-100}^{100}\sqrt{1+(y')^2}dx L = ∫ − 100 100 1 + ( y ′ ) 2 d x
= ∫ − 100 100 ( 1 2 ( e x / 150 + e − x / 150 ) ) 2 d x =\displaystyle\int_{-100}^{100}\sqrt{(\dfrac{1}{2}(e^{x/150}+e^{-x/150}))^2}dx = ∫ − 100 100 ( 2 1 ( e x /150 + e − x /150 ) ) 2 d x
= ∫ − 100 100 1 2 ( e x / 150 + e − x / 150 ) d x =\displaystyle\int_{-100}^{100}\dfrac{1}{2}(e^{x/150}+e^{-x/150})dx = ∫ − 100 100 2 1 ( e x /150 + e − x /150 ) d x
= 2 ( 1 2 ) ∫ 0 100 ( e x / 150 + e − x / 150 ) d x =2(\dfrac{1}{2})\displaystyle\int_{0}^{100}(e^{x/150}+e^{-x/150})dx = 2 ( 2 1 ) ∫ 0 100 ( e x /150 + e − x /150 ) d x
= 150 [ e x / 150 − e − x / 150 ] 100 0 =150\big[e^{x/150}-e^{-x/150}\big]\begin{matrix}
100 \\
0
\end{matrix} = 150 [ e x /150 − e − x /150 ] 100 0
= 150 ( e 100 / 150 − e − 100 / 150 − ( 1 − 1 ) ) =150(e^{100/150}-e^{-100/150}-(1-1)) = 150 ( e 100/150 − e − 100/150 − ( 1 − 1 ))
= 150 ( e 2 / 3 − e − 2 / 3 ) ≈ 215.148 m =150(e^{2/3}-e^{-2/3})\approx215.148\ m = 150 ( e 2/3 − e − 2/3 ) ≈ 215.148 m
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments