f ( t ) = e β ( t β 1 ) 2 , t β₯ 0 f(t)=e^{-(t-1)^2}, t\geq0 f ( t ) = e β ( t β 1 ) 2 , t β₯ 0 a)
f ( 0 ) = e β ( 0 β 1 ) 2 = e β 1 f(0)=e^{-(0-1)^2}=e^{-1} f ( 0 ) = e β ( 0 β 1 ) 2 = e β 1 The initial displacement is e β 1 e^{-1} e β 1 units.
b)
f β² ( t ) = β 2 ( t β 1 ) e β ( t β 1 ) 2 f'(t)=-2(t-1)e^{-(t-1)^2} f β² ( t ) = β 2 ( t β 1 ) e β ( t β 1 ) 2
f β² ( t ) = 0 = > β 2 ( t β 1 ) e β ( t β 1 ) 2 = 0 = > t = 1 f'(t)=0=>-2(t-1)e^{-(t-1)^2}=0=>t=1 f β² ( t ) = 0 => β 2 ( t β 1 ) e β ( t β 1 ) 2 = 0 => t = 1 Critical point: t = 1 t=1 t = 1
f ( 1 ) = e β ( 1 β 1 ) 2 = 1 f(1)=e^{-(1-1)^2}=1 f ( 1 ) = e β ( 1 β 1 ) 2 = 1
c)
v ( t ) = f β² ( t ) = β 2 ( t β 1 ) e β ( t β 1 ) 2 , t β₯ 0 v(t)=f'(t)=-2(t-1)e^{-(t-1)^2}, t\geq0 v ( t ) = f β² ( t ) = β 2 ( t β 1 ) e β ( t β 1 ) 2 , t β₯ 0
Positive velocity of the particle: t β [ 0 , 1 ) t\in[0, 1) t β [ 0 , 1 )
Negative velocity of the particle: t β ( 1 , β ) t\in(1, \infin) t β ( 1 , β )
d)
a ( t ) = f β² β² ( t ) = v β² ( t ) = ( β 2 ( t β 1 ) e β ( t β 1 ) 2 ) β² a(t)=f''(t)=v'(t)=(-2(t-1)e^{-(t-1)^2})' a ( t ) = f β²β² ( t ) = v β² ( t ) = ( β 2 ( t β 1 ) e β ( t β 1 ) 2 ) β²
= ( β 2 + 4 ( t β 1 ) 2 ) e β ( t β 1 ) 2 = 2 ( 2 t 2 β 4 t + 1 ) e β ( t β 1 ) 2 =(-2+4(t-1)^2)e^{-(t-1)^2}=2(2t^2-4t+1)e^{-(t-1)^2} = ( β 2 + 4 ( t β 1 ) 2 ) e β ( t β 1 ) 2 = 2 ( 2 t 2 β 4 t + 1 ) e β ( t β 1 ) 2
a ( t ) = 0 = > 2 ( 2 t 2 β 4 t + 1 ) e β ( t β 1 ) 2 = 0 a(t)=0=>2(2t^2-4t+1)e^{-(t-1)^2}=0 a ( t ) = 0 => 2 ( 2 t 2 β 4 t + 1 ) e β ( t β 1 ) 2 = 0
2 t 2 β 4 t + 1 = 0 , t β₯ 0 2t^2-4t+1=0, t\geq 0 2 t 2 β 4 t + 1 = 0 , t β₯ 0
t = 2 Β± 2 2 = 1 Β± 2 2 t=\dfrac{2\pm\sqrt{2}}{2}=1\pm\dfrac{\sqrt{2}}{2} t = 2 2 Β± 2 β β = 1 Β± 2 2 β β If 0 β€ t < 1 β 2 2 , a ( t ) > 0 0\leq t<1-\dfrac{\sqrt{2}}{2},a(t)>0 0 β€ t < 1 β 2 2 β β , a ( t ) > 0
If 1 β 2 2 < t < 1 + 2 2 , a ( t ) < 0 1-\dfrac{\sqrt{2}}{2}< t<1+\dfrac{\sqrt{2}}{2},a(t)<0 1 β 2 2 β β < t < 1 + 2 2 β β , a ( t ) < 0
If t > 1 + 2 2 , a ( t ) > 0 t>1+\dfrac{\sqrt{2}}{2},a(t)>0 t > 1 + 2 2 β β , a ( t ) > 0
Particle changes from acceleration to deceleration at t = 1 β 2 2 . t=1-\dfrac{\sqrt{2}}{2}. t = 1 β 2 2 β β .
Particle changes from deceleration to acceleration at t = 1 + 2 2 . t=1+\dfrac{\sqrt{2}}{2}. t = 1 + 2 2 β β .
e) Critical point: t = 1 t=1 t = 1
f ( 1 ) = e β ( 1 β 1 ) 2 = 1 f(1)=e^{-(1-1)^2}=1 f ( 1 ) = e β ( 1 β 1 ) 2 = 1 The maximum displacement of the particle is 1 1 1 unit.
f) Sketch the graph of π(π‘).
Comments