Question #220233

A piece of wire 20 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is: (a) maximum? (b) minimum? 


1
Expert's answer
2021-08-11T19:38:47-0400

i)

Let x meters be the side of square , so 4xx meters be the total amount of wires used for square .(with 04x20    0x5).\leq4x\leq20 \implies 0\leq x\leq5). For equilateral triangle 20-4xx , wire remains .and the side will be 204x3\dfrac{20-4x}{3}


Given the side l of an equilateral triangle , the height is , is using the pitagoras theorem , we get -h=l32,h=\dfrac{l{\sqrt3}}{2}, so the area of triangle will become ,


A=l2l3212A=\dfrac{l}{2}\dfrac{l{\sqrt 3}}{2}\dfrac{1}{2}


so the total area is -


A=x2+(204x3)234A=x^{2}+(\dfrac{20-4x}{3})^{2}\dfrac{\sqrt 3}{4}


A=2x+3419.2(204x).(4)=2x239(204x)A{'}=2x+\dfrac{\sqrt 3}{4}\dfrac{1}{9}.2(20-4x).(-4)=2x-\dfrac{2{\sqrt 3}}{9}(20-4x)


A>0 ifA^{'}>0 \ if

=2x239(204x)>0=2x-\dfrac{2{\sqrt3}}{9}(20-4x)>0


x>4032(9+43)x>\dfrac{40\sqrt 3}{2(9+4{\sqrt 3})}


x>20(334)11=x>\dfrac{20(3{\sqrt 3}-4)}{11}=

So the function area is decreasing in [0,x)x) and growing in (x,5] so the point is (xˉ,5](\bar x,5] is minimum of the function . The conclusion is that maximum (absolute maximum) is minimum of side of the function of the interval of function xx ,0,5 .


if x=0 , then the area will be - A=19.2A=19.2

if x=0 , then the area will be xx =25.

in case the maximum area will be there where all the wire used as square .


ii)

Let the two pieces be x and y.x\ and\ y.

Given,

=x+y=20=x+y=20


Perimeter of square =xx

x

side =x4\ =\dfrac{x}{4}


Area of square =x216\dfrac{x^{2}}{16}


Perimeter of triangle =y=y


Side =y3\ =\dfrac{y}{3}


We know , that area of triangle is given by =34a2=\dfrac{\sqrt3}{4}a^{2}


=34(y3)2=336y2=\dfrac{\sqrt3}{4}(\dfrac{y}{3})^{2}=\dfrac{\sqrt{3}}{36}y^{2}


z=z= area of square +area of triangle


z=x216+336y2z=\dfrac{x^{2}}{16}+\dfrac{\sqrt{3}}{36}y^{2}


Now replacing the value of y,y,


Replacing y=20x,y=20-x,


z=x216+336(20x)2z=\dfrac{x^{2}}{16}+\dfrac{\sqrt3}{36}(20-x)^{2}


=dzdx=x8318(20x)=\dfrac{dz}{dx}=\dfrac{x}{8}-\dfrac{\sqrt3}{18}(20-x)


equate ,dzdx=0\dfrac{dz}{dx}=0


we have ,


=x83(20x)18=0=\dfrac{x}{8}-\dfrac{\sqrt 3(20-x)}{18}=0


=x8=3(20x)18=\dfrac{x}{8}=\dfrac{\sqrt 3(20-x)}{18}


Solving the above equation , we get -


x=8039+43x=\dfrac{80\sqrt 3}{9+4\sqrt 3}


y=208039+43y=20-\dfrac{80\sqrt 3}{9+4\sqrt 3}


=d2zdx2=18+318>0=\dfrac{d^{2}z}{dx^{2}}=\dfrac{1}{8}+\dfrac{\sqrt 3}{18}>0



Thus , z is minimum when x=x= 8039+43\dfrac{80\sqrt 3}{9+4\sqrt 3} y=1809+43y=\dfrac{180}{9+4\sqrt 3} .





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS