Question #212687

Differentiate the following with regard to x : y=(cosec x +2tanx)^3


1
Expert's answer
2021-07-05T06:46:18-0400

y=((cosecx+2tanx)3)==3(cosecx+2tanx)2(cosecx+2tanx)=3(cosecx+2tanx)2(1sinx+2tanx)==3(cosecx+2tanx)2(1sin2xcosx+2cos2x)=3(cosecx+2tanx)2(cotxsinx+2cos2x)==3(cosecx+2tanx)2(2sec2xcotxcosecx)y' = {\left( {{{\left( {\cos ecx + 2\tan x} \right)}^3}} \right)^\prime } = \\=3{\left( {\cos ecx + 2\tan x} \right)^2} \cdot {\left( {\cos ecx + 2\tan x} \right)^\prime } = 3{\left( {\cos ecx + 2\tan x} \right)^2} \cdot {\left( {\frac{1}{{\sin x}} + 2\tan x} \right)^\prime } =\\ =3{\left( {\cos ecx + 2\tan x} \right)^2} \cdot \left( { - \frac{1}{{{{\sin }^2}x}}\cos x + \frac{2}{{{{\cos }^2}x}}} \right) = 3{\left( {\cos ecx + 2\tan x} \right)^2} \cdot \left( { - \frac{{cotx}}{{\sin x}} + \frac{2}{{{{\cos }^2}x}}} \right) =\\= 3{\left( {\cos ecx + 2\tan x} \right)^2} \cdot \left( {2{{\sec }^2}x - cotx\cos ecx} \right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS