Question #209165

Find the area bounded by the curve 𝑦 = (𝑥^2)/4

and 𝑥 + 4 = 2y


1
Expert's answer
2021-06-21T16:32:55-0400
y=x24y=\dfrac{x^2}{4}

x+4=2y=>y=12x+2x+4=2y=>y=\dfrac{1}{2}x+2

x24=12x+2\dfrac{x^2}{4}=\dfrac{1}{2}x+2

x22x8=0x^2-2x-8=0

(x+2)(x4)=0(x+2)(x-4)=0

x1=2,x2=4x_1=-2, x_2=4

A=24(12x+2x24)dx=A=\displaystyle\int_{-2}^{4}(\dfrac{1}{2}x+2-\dfrac{x^2}{4})dx=

=[x24+2xx312]42=\big[\dfrac{x^2}{4}+2x-\dfrac{x^3}{12}\big]\begin{matrix} 4 \\ -2 \end{matrix}

=4+8163(14+23)=9(units2)=4+8-\dfrac{16}{3}-(1-4+\dfrac{2}{3})=9(units^2)

A=9A=9 square units



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS