Find the area bounded by the curve π¦ = (π₯^2)/4
and π₯ + 4 = 2y
"x+4=2y=>y=\\dfrac{1}{2}x+2"
"\\dfrac{x^2}{4}=\\dfrac{1}{2}x+2"
"x^2-2x-8=0"
"(x+2)(x-4)=0"
"x_1=-2, x_2=4"
"A=\\displaystyle\\int_{-2}^{4}(\\dfrac{1}{2}x+2-\\dfrac{x^2}{4})dx="
"=\\big[\\dfrac{x^2}{4}+2x-\\dfrac{x^3}{12}\\big]\\begin{matrix}\n 4 \\\\\n -2\n\\end{matrix}"
"=4+8-\\dfrac{16}{3}-(1-4+\\dfrac{2}{3})=9(units^2)"
"A=9" square units
Comments
Leave a comment