Answer to Question #208682 in Calculus for Didues

Question #208682

L-1(s2 - 4 / ( s+2) 2)


1
Expert's answer
2021-06-22T06:15:36-0400

Using the table of originals and images, we get:

L1(1(s+2)2)=te2t{L^{ - 1}}\left( {\frac{1}{{{{(s + 2)}^2}}}} \right) = t{e^{ - 2t}}

By the image differentiation theorem

L1(s2)=δ(t){L^{ - 1}}\left( {{s^2}} \right) = \delta ''\left( t \right)

Then

L1(s24(s+2)2)=L1(s2)4L1(1(s+2)2)=δ(t)4te2t{L^{ - 1}}\left( {{s^2} - \frac{4}{{{{(s + 2)}^2}}}} \right) = {L^{ - 1}}\left( {{s^2}} \right) - 4{L^{ - 1}}\left( {\frac{1}{{{{(s + 2)}^2}}}} \right) = \delta ''\left( t \right) - 4t{e^{ - 2t}}

Answer: δ(t)4te2t\delta ''\left( t \right) - 4t{e^{ - 2t}} , δ(t)\delta \left( t \right) is Dirac delta function


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment