L-1(s2 - 4 / ( s+2) 2)
Using the table of originals and images, we get:
L−1(1(s+2)2)=te−2t{L^{ - 1}}\left( {\frac{1}{{{{(s + 2)}^2}}}} \right) = t{e^{ - 2t}}L−1((s+2)21)=te−2t
By the image differentiation theorem
L−1(s2)=δ′′(t){L^{ - 1}}\left( {{s^2}} \right) = \delta ''\left( t \right)L−1(s2)=δ′′(t)
Then
L−1(s2−4(s+2)2)=L−1(s2)−4L−1(1(s+2)2)=δ′′(t)−4te−2t{L^{ - 1}}\left( {{s^2} - \frac{4}{{{{(s + 2)}^2}}}} \right) = {L^{ - 1}}\left( {{s^2}} \right) - 4{L^{ - 1}}\left( {\frac{1}{{{{(s + 2)}^2}}}} \right) = \delta ''\left( t \right) - 4t{e^{ - 2t}}L−1(s2−(s+2)24)=L−1(s2)−4L−1((s+2)21)=δ′′(t)−4te−2t
Answer: δ′′(t)−4te−2t\delta ''\left( t \right) - 4t{e^{ - 2t}}δ′′(t)−4te−2t , δ(t)\delta \left( t \right)δ(t) is Dirac delta function
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment