L-1(s2 - 4 / ( s+2) 2)
Using the table of originals and images, we get:
"{L^{ - 1}}\\left( {\\frac{1}{{{{(s + 2)}^2}}}} \\right) = t{e^{ - 2t}}"
By the image differentiation theorem
"{L^{ - 1}}\\left( {{s^2}} \\right) = \\delta ''\\left( t \\right)"
Then
"{L^{ - 1}}\\left( {{s^2} - \\frac{4}{{{{(s + 2)}^2}}}} \\right) = {L^{ - 1}}\\left( {{s^2}} \\right) - 4{L^{ - 1}}\\left( {\\frac{1}{{{{(s + 2)}^2}}}} \\right) = \\delta ''\\left( t \\right) - 4t{e^{ - 2t}}"
Answer: "\\delta ''\\left( t \\right) - 4t{e^{ - 2t}}" , "\\delta \\left( t \\right)" is Dirac delta function
Comments
Leave a comment