If the curve is described as x = g ( y ) , c ≤ y ≤ d , x=g(y), c\leq y\leq d, x = g ( y ) , c ≤ y ≤ d , then the formula for surface area
becomes
S = ∫ c d 2 π y 1 + ( x y ′ ) 2 d y S=\displaystyle\int_{c}^{d}2\pi y\sqrt{1+(x'_y)^2}dy S = ∫ c d 2 π y 1 + ( x y ′ ) 2 d y
x = 1 12 y 2 = > x y ′ = 1 6 y x=\dfrac{1}{12}y^2=>x'_y=\dfrac{1}{6}y x = 12 1 y 2 => x y ′ = 6 1 y
0 ≤ y ≤ 6 0\leq y\leq 6 0 ≤ y ≤ 6
S = ∫ 0 6 2 π y 1 + ( 1 6 y ) 2 d y S=\displaystyle\int_{0}^{6}2\pi y\sqrt{1+(\dfrac{1}{6}y)^2}dy S = ∫ 0 6 2 π y 1 + ( 6 1 y ) 2 d y
u = 1 + 1 36 y 2 , d u = 1 18 y d y u=1+\dfrac{1}{36}y^2, du=\dfrac{1}{18}ydy u = 1 + 36 1 y 2 , d u = 18 1 y d y
∫ y 1 + 1 36 y 2 d y = 18 ∫ u d u = 12 u 3 / 2 + C \int y\sqrt{1+\dfrac{1}{36}y^2}\ dy=18\int\sqrt{u}du=12u^{3/2}+C ∫ y 1 + 36 1 y 2 d y = 18 ∫ u d u = 12 u 3/2 + C
= 12 ( 1 + 1 36 y 2 ) 3 / 2 + C =12(1+\dfrac{1}{36}y^2)^{3/2}+C = 12 ( 1 + 36 1 y 2 ) 3/2 + C
S = 24 π [ ( 1 + 1 36 y 2 ) 3 / 2 ] 6 0 = 24 π ( 2 2 − 1 ) ( u n i t s 2 ) S=24\pi\big[(1+\dfrac{1}{36}y^2)^{3/2}\big]\begin{matrix}
6 \\
0
\end{matrix}=24\pi(2\sqrt{2}-1) (units^2) S = 24 π [ ( 1 + 36 1 y 2 ) 3/2 ] 6 0 = 24 π ( 2 2 − 1 ) ( u ni t s 2 )
S = 24 π ( 2 2 − 1 ) square units S=24\pi(2\sqrt{2}-1) \text{ square units} S = 24 π ( 2 2 − 1 ) square units
Comments