Answer to Question #205272 in Calculus for lawrence canda

Question #205272

Find the surface area generated when the portion of the curve

y2 = 12x from x = 0, x = 3 is rotated about the x-axis.



1
Expert's answer
2021-06-14T15:59:17-0400


If the curve is described as x=g(y),cyd,x=g(y), c\leq y\leq d, then the formula for surface area

becomes


S=cd2πy1+(xy)2dyS=\displaystyle\int_{c}^{d}2\pi y\sqrt{1+(x'_y)^2}dy


x=112y2=>xy=16yx=\dfrac{1}{12}y^2=>x'_y=\dfrac{1}{6}y

0y60\leq y\leq 6

S=062πy1+(16y)2dyS=\displaystyle\int_{0}^{6}2\pi y\sqrt{1+(\dfrac{1}{6}y)^2}dy

u=1+136y2,du=118ydyu=1+\dfrac{1}{36}y^2, du=\dfrac{1}{18}ydy

y1+136y2 dy=18udu=12u3/2+C\int y\sqrt{1+\dfrac{1}{36}y^2}\ dy=18\int\sqrt{u}du=12u^{3/2}+C

=12(1+136y2)3/2+C=12(1+\dfrac{1}{36}y^2)^{3/2}+C

S=24π[(1+136y2)3/2]60=24π(221)(units2)S=24\pi\big[(1+\dfrac{1}{36}y^2)^{3/2}\big]\begin{matrix} 6 \\ 0 \end{matrix}=24\pi(2\sqrt{2}-1) (units^2)


S=24π(221) square unitsS=24\pi(2\sqrt{2}-1) \text{ square units}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment