Find the surface area of the portion of the curve x2 =4y from y =1 to y =2 when it is revolved about the y-axis.
"x^2=4y\\quad \\Rightarrow \\quad x=\\sqrt{4y}=2\\sqrt{y}"
"g(y)=2\\sqrt{y}" from "y=1" to "y=2"
"g^\\prime (y)=1\/\\sqrt{y}"
Surface Area "=\\int\\limits_1^22\\pi \\ g(y)\\ \\sqrt{1+\\big(g^\\prime (y)\\big)^2}\\ dy=\\int\\limits_1^24\\pi \\sqrt{y} \\ \\cdot \\ \\sqrt{1+1\/y}\\ dy=4\\pi \\int\\limits_1^2\\sqrt{y+1}\\ dy= \\tfrac{8\\pi}{3} (y+1)^{3\/2}\\bigg|_1^2=\\tfrac{8\\pi}{3}\\big(3\\sqrt{3}-2\\sqrt{2}\\big)"
Answer: Surface Area "\\approx \\ 19.836"
Comments
Leave a comment