Find the surface area of the portion of the curve x2 =4y from y =1 to y =2 when it is revolved about the y-axis.
x2=4y⇒x=4y=2yx^2=4y\quad \Rightarrow \quad x=\sqrt{4y}=2\sqrt{y}x2=4y⇒x=4y=2y
g(y)=2yg(y)=2\sqrt{y}g(y)=2y from y=1y=1y=1 to y=2y=2y=2
g′(y)=1/yg^\prime (y)=1/\sqrt{y}g′(y)=1/y
Surface Area =∫122π g(y) 1+(g′(y))2 dy=∫124πy ⋅ 1+1/y dy=4π∫12y+1 dy=8π3(y+1)3/2∣12=8π3(33−22)=\int\limits_1^22\pi \ g(y)\ \sqrt{1+\big(g^\prime (y)\big)^2}\ dy=\int\limits_1^24\pi \sqrt{y} \ \cdot \ \sqrt{1+1/y}\ dy=4\pi \int\limits_1^2\sqrt{y+1}\ dy= \tfrac{8\pi}{3} (y+1)^{3/2}\bigg|_1^2=\tfrac{8\pi}{3}\big(3\sqrt{3}-2\sqrt{2}\big)=1∫22π g(y) 1+(g′(y))2 dy=1∫24πy ⋅ 1+1/y dy=4π1∫2y+1 dy=38π(y+1)3/2∣∣12=38π(33−22)
Answer: Surface Area ≈ 19.836\approx \ 19.836≈ 19.836
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments