Question #205269

Find the surface area of the portion of the curve x2 =4y from y =1 to y =2 when it is revolved about the y-axis.



1
Expert's answer
2022-02-07T12:27:16-0500

x2=4yx=4y=2yx^2=4y\quad \Rightarrow \quad x=\sqrt{4y}=2\sqrt{y}


g(y)=2yg(y)=2\sqrt{y} from y=1y=1 to y=2y=2

g(y)=1/yg^\prime (y)=1/\sqrt{y}


Surface Area =122π g(y) 1+(g(y))2 dy=124πy  1+1/y dy=4π12y+1 dy=8π3(y+1)3/212=8π3(3322)=\int\limits_1^22\pi \ g(y)\ \sqrt{1+\big(g^\prime (y)\big)^2}\ dy=\int\limits_1^24\pi \sqrt{y} \ \cdot \ \sqrt{1+1/y}\ dy=4\pi \int\limits_1^2\sqrt{y+1}\ dy= \tfrac{8\pi}{3} (y+1)^{3/2}\bigg|_1^2=\tfrac{8\pi}{3}\big(3\sqrt{3}-2\sqrt{2}\big)


Answer: Surface Area  19.836\approx \ 19.836


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS