Calculate the area of the region inside the cardioid r = a(1 + sin Ɵ) outside the r = a sinƟ circle and above the polar ray. Show by drawing.
"r=a\\sin \\theta"
"0\\leq \\theta \\leq \\pi"
The area of the circle
"=\\dfrac{a^2}{4}[\\theta-\\dfrac{1}{2}\\sin(2\\theta)]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}=\\dfrac{\\pi a^2}{4}(units^2)"
The area of the part of the cardioid
"=\\dfrac{a^2}{2}\\displaystyle\\int_{0}^{\\pi}(1+2\\sin \\theta+\\dfrac{1}{2}-\\dfrac{1}{2}\\cos(2 \\theta))d\\theta"
"=\\dfrac{a^2}{2}[\\dfrac{3}{2}\\theta-2\\cos\\theta-\\dfrac{1}{4}\\sin(2\\theta)]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}"
"=a^2(\\dfrac{3\\pi}{4}+2)(units^2)"
"=(\\dfrac{\\pi }{2}+2)a^2\\ (units^2)"
Comments
Leave a comment