Q. Construct the solution of the heat equation using separation of variables method:
u_xx=4u_t , 0<x<40, t>0
u(0, t)=0, u(40, t)=0, t>0
u(x,0)= x, 0 less than or equal x less than or equal 20, u(x,0)=40-x, 20 less than or equal x less than or equal 40
"\\frac{T'}{T}=\\frac{X''}{X}=\\lambda"
"0=u(0,t)=X(0)T(t)=X(0)=0"
"0=u_x(40,t)=X'(40)T(t)=X'(40)=0"
"T'(t) = \u03bbT(t)"
"X(0) = X'\n(40) = 0."
"X'(40)=0=\\mu C_1cos(40\\mu )=0"
"\u03bbn =-(n-\\frac{1}{2})^2"
"X_n(x)=sin(n- \\frac{1}{2})^x"
"u_n(x,t)=X_n(x)T_n(t)=sin(n-\\frac{1}{2})x )exp(-(n-\\frac{1}2)^2t)"
"u_n(x,t)=\\sum_{n-1}^\\infty sin(n-\\frac{1}{2})x )exp(-(n-\\frac{1}2)^2t)"
"f(x)=\\sum^\\infty_{n-1}b_n sin((n-\\frac{1}{2})x)"
"b_n=\\frac{2}L \\int_0^Lf(x) sin((n-\\frac{1}2)x)dx=\\int_0^{40} f(x)sin((n- \\frac{1}2)x)dx"
"\\int_0^{40} sin((n-\\frac{1}2)x)sin((m-\\frac{1}2)x)dx=[_{20}^0"
"b_n=\\frac{2}{40} \\int _0^{40}f(x) sin ((n-\\frac{1}2)x)dx=\\frac{6}{40}\\int_0^{40} sin(\\frac{5x}2)sin((n- \\frac{1}2)x)dx"
"b_n=\\frac{6}{40} \\int_0^{40} sin(100x)sin((n-\\frac{1}2)x)dx=[_0^3"
"f(x)=\\sum_{n=1}^\\infty b_nsin((n-\\frac{1}2)x)"
"u(x,t)=3 sin (\\frac{5x}{2})exp (-(\\frac{1}{2})t)"
Comments
Leave a comment