Answer to Question #204421 in Calculus for Kenneth

Question #204421

Using first principle show that the derivative of COSX = -SINX


1
Expert's answer
2021-06-08T17:44:37-0400

We will find derivative of cos(x)with first principle.First principle formula of derivative such that...f(x)=limh0      f(x+h)(x)h=limh0      cos(x+h)cos(x)h=limh0      cosxcoshsinxsinhcos(x)h=limh0      cosx(cosh1)sinxsinhh=limh0      cosx(cosh1)hsinxsinhh=limh0      cosx(cosh1)hsinxsinhh=cosx0sinx1=0sin(x)=sin(x)We \space will \space find \space derivative \\ \space of \space cos (x) with \space first \space principle.\\ First \space principle \space formula \space of \\ \space derivative \space such \space that...\\ f'(x)=\\\displaystyle \lim_{h\rightarrow 0}\;\;\;\frac{f(x+h)-(x)}{h}\\\\ =\displaystyle \lim_{h\rightarrow 0}\;\;\;\frac{cos(x+h)-cos(x)}{h}\\\\ =\displaystyle \lim_{h\rightarrow 0}\;\;\;\frac{cosx*cosh-sinx*sinh-cos(x)}{h}\\\\ =\displaystyle \lim_{h\rightarrow 0}\;\;\;\frac{cosx(cosh-1)-sinx*sinh}{h}\\\\ =\displaystyle \lim_{h\rightarrow 0}\;\;\;\frac{cosx(cosh-1)}{h}-\frac{sinx*sinh}{h}\\\\ =\displaystyle \lim_{h\rightarrow 0}\;\;\;cosx*\frac{(cosh-1)}{h}-sinx*\frac{sinh}{h}\\\\ =cosx*0-sinx*1\\\\ =0-sin(x)\\\\ =-sin(x)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment