Evaluate the integral of (5x+2)³ dx
Answer:
∫(5x+2)3dx=120(5x+2)4+C\int (5x+2)^3dx=\dfrac{1}{20}(5x+ 2)^4+C∫(5x+2)3dx=201(5x+2)4+C
Explanation:
∫(5x+2)3dx=\int (5x+2)^3dx =∫(5x+2)3dx=
Making the substitution,
v=5x+2v =5x+2v=5x+2, dvdx=5\dfrac{dv}{dx} =5dxdv=5
dx=dv5dx = \dfrac{dv}5dx=5dv
then,
∫(5x+2)3dx=∫v3 dv5=15∫v3 dv\int{(5x+2)^3}dx = \int v³\ \dfrac{dv}{5} = \dfrac15\int v³\ dv∫(5x+2)3dx=∫v3 5dv=51∫v3 dv
=15(v44)+C=v420+C= \dfrac15(\dfrac{v⁴}{4}) + C = \dfrac{v⁴}{20} + C=51(4v4)+C=20v4+C
Since, v=5x+2v = 5x + 2v=5x+2
∴∫(5x+2)3dx=120(5x+2)4+C\therefore \int (5x+2)^3dx=\dfrac{1}{20}(5x+ 2)^4+C∴∫(5x+2)3dx=201(5x+2)4+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments