Question #174482

(a) Find the area enclosed by the curve 𝑦 = 25 − 𝑥2

and the straight line 

𝑦 = 𝑥 + 13 correct to 1 decimal place.

(b)Calculate the arc length of the curve 𝑦 = 𝑥

3

2 between 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 1

correct to 1 decimal place


1
Expert's answer
2021-03-24T07:41:40-0400

To get the points of intersection,

y=y

25x2=x+13x2+x12=0x=4,x=325-x^2=x+13\\ x^2+x-12=0\\ x=-4, x=3

The 2 points of intersection are at x = -4 and x = 3.

y=25x2INT(x)=25xx33INT(3)=759=66INT(x)=25xx33INT(4)=100+643=2363y=25- x^2\\ INT(x) = 25x - {\frac{x^{3}}{3}}\\ INT(3) = 75 - 9 = 66\\ INT(x) = 25x - {\frac{x^{3}}{3}}\\ INT(-4) = -100 + \frac{64}{3} = \frac{-236}{3}

Area under parabola to x-axis,

=66+2363=4343Area under line=87.5squnit.b)F(x)=x32(f(x))2=9xArc length=011+9xdxu=1+9x,du=9dxWhen,x=0,u=1,When,x=1,u=10=19011+9xdx=19110udu=19×23u32110=2.3units= 66 +\frac{236}{3} = \frac{434}{3}\\ \text{Area under line}= 87.5 sq unit.\\ b)\\ F(x)=x^{\frac{3}{2}}\\ (f'(x))^2=9x\\ \text{Arc length}=\int_0^1 \sqrt{1+9x}dx\\ u=1+9x, du=9dx\\ When, x=0, u=1, When, x=1, u=10\\ ={\frac{1}{9}}\int_0^1\sqrt{1+9x}dx\\ ={\frac{1}{9}}\int_1^{10}\sqrt{u}du\\ ={\frac{1}{9}}\times{\frac{2}{3}} u^{\frac{3}{2}}|_1^{10}\\ =2.3units


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS