To get the points of intersection,
y=y
25 − x 2 = x + 13 x 2 + x − 12 = 0 x = − 4 , x = 3 25-x^2=x+13\\
x^2+x-12=0\\
x=-4, x=3 25 − x 2 = x + 13 x 2 + x − 12 = 0 x = − 4 , x = 3
The 2 points of intersection are at x = -4 and x = 3.
y = 25 − x 2 I N T ( x ) = 25 x − x 3 3 I N T ( 3 ) = 75 − 9 = 66 I N T ( x ) = 25 x − x 3 3 I N T ( − 4 ) = − 100 + 64 3 = − 236 3 y=25- x^2\\
INT(x) = 25x - {\frac{x^{3}}{3}}\\
INT(3) = 75 - 9 = 66\\
INT(x) = 25x - {\frac{x^{3}}{3}}\\
INT(-4) = -100 + \frac{64}{3} = \frac{-236}{3} y = 25 − x 2 I NT ( x ) = 25 x − 3 x 3 I NT ( 3 ) = 75 − 9 = 66 I NT ( x ) = 25 x − 3 x 3 I NT ( − 4 ) = − 100 + 3 64 = 3 − 236
Area under parabola to x-axis,
= 66 + 236 3 = 434 3 Area under line = 87.5 s q u n i t . b ) F ( x ) = x 3 2 ( f ′ ( x ) ) 2 = 9 x Arc length = ∫ 0 1 1 + 9 x d x u = 1 + 9 x , d u = 9 d x W h e n , x = 0 , u = 1 , W h e n , x = 1 , u = 10 = 1 9 ∫ 0 1 1 + 9 x d x = 1 9 ∫ 1 10 u d u = 1 9 × 2 3 u 3 2 ∣ 1 10 = 2.3 u n i t s = 66 +\frac{236}{3} = \frac{434}{3}\\
\text{Area under line}= 87.5 sq unit.\\
b)\\
F(x)=x^{\frac{3}{2}}\\
(f'(x))^2=9x\\
\text{Arc length}=\int_0^1 \sqrt{1+9x}dx\\
u=1+9x, du=9dx\\
When, x=0, u=1, When, x=1, u=10\\
={\frac{1}{9}}\int_0^1\sqrt{1+9x}dx\\
={\frac{1}{9}}\int_1^{10}\sqrt{u}du\\
={\frac{1}{9}}\times{\frac{2}{3}} u^{\frac{3}{2}}|_1^{10}\\
=2.3units = 66 + 3 236 = 3 434 Area under line = 87.5 s q u ni t . b ) F ( x ) = x 2 3 ( f ′ ( x ) ) 2 = 9 x Arc length = ∫ 0 1 1 + 9 x d x u = 1 + 9 x , d u = 9 d x Wh e n , x = 0 , u = 1 , Wh e n , x = 1 , u = 10 = 9 1 ∫ 0 1 1 + 9 x d x = 9 1 ∫ 1 10 u d u = 9 1 × 3 2 u 2 3 ∣ 1 10 = 2.3 u ni t s
Comments