Prove that a sequence that diverges to +∞ (resp. −∞) is divergent
A sequence "\\{a_n\\}_{n=1}^{+\\infty}" that diverges to +∞ or -∞ is unbounded:
"a_n\\to+\\infty" means "\\forall M>0\\,\\exist N\\in\\mathbb{N}\\, \\forall n>N a_n>M" that implies "\\sup\\limits_n| a_n|=+\\infty"
"a_n\\to-\\infty" means "\\forall M>0\\,\\exist N\\in\\mathbb{N}\\, \\forall n>N a_n<-M" that implies "\\sup\\limits_n| a_n|=+\\infty"
A sequence "\\{a_n\\}_{n=1}^{+\\infty}" that converges to a finite number A is bounded:
"\\forall \\varepsilon>0\\,\\exist N(\\varepsilon)\\in\\mathbb{N}\\, \\forall n>N(\\varepsilon) |a_n-A|<\\varepsilon"
If we take "\\varepsilon=1" then "\\forall n>N(1) |a_n-A|<1", "|a_n|<|A|+1" and "\\sup\\limits_n |a_n|\\leq \\max\\{|A|+1,|a_1|, |a_2|,\\dots,|a_{N(1)}|\\}<+\\infty"
Therefore, any sequence that diverges to +∞ or -∞ is divergent.
Comments
Leave a comment