a) Find the work done by the force field F on a particle that moves along the curve C. F(x, y) = (x2 + xy)i + (y – x2 y)j C : x = t, y = 1/t (1 ≤ t ≤ 3)
b) Use Green’s Theorem to evaluate the integral, assume that the curve C is oriented counterclockwise. , where C is the triangle with vertices (0, 0), (3, 3), and (0, 3).
c) Evaluate the surface integral , where σ is the part of the cone z =x2 + y2 that lies between the planes z = 1 and z = 2.
d) Use the Divergence Theorem to find the flux of F across the surface σ with outward orientation. F(x, y, z) = z3 i – x3 j + y3 k, where σ is the sphere x2 + y2 + z2 = a2.
a) "W=\\intop_CF\\cdot dr"
"r(t)=(t,1\/t)"
"r'(t)=(1,-1\/t^2)"
"F(t)=(t^2+1,\\frac{1}{t}-t)"
"\\displaystyle\\intop_1^3(t^2+1,\\frac{1}{t}-t)\\cdot(1,-1\/t^2)dt=\\displaystyle\\intop_1^3(t^2+1-\\frac{1}{t^3}+\\frac{1}{t})dt="
"=(\\frac{t^3}{3}+t+\\frac{1}{2t^2}+lnt)|^3_1=9+1-\\frac{1}{27}+\\frac{1}{3}-1-1+1-1=8+\\frac{8}{27}=\\frac{224}{27}"
b)
"\\oint_C(x^2+xy)dx+(y-x^2y)dy=\\iint_D(Q_x-P_y)dA="
"=\\iint_D(-2xy-x)dA=\\displaystyle\\intop_0^3dy\\displaystyle\\intop_0^y(-2xy-x)dx="
"=-\\displaystyle\\intop_0^3(y^3+\\frac{y^2}{2})dy=-(\\frac{y^4}{4}+\\frac{y^3}{6})|^3_0=-(\\frac{81}{4}+\\frac{27}{6})=-\\frac{297}{12}"
c) Parametri equations of the cone:
"x=zcost, y=zsint, z=z" ("0\\leq t\\leq 2\\pi, 1\\leq z \\leq 2" )
"r(t,z)=zcosti+zsintj+zk"
"r_t\\times r_z=\\begin{vmatrix}\n i & j&k \\\\\n -zsint & zcost&0 \\\\ \n cost&sint&1 \\\\\n\\end{vmatrix}=zcosti+zsintj-zk"
"|r_t\\times r_z|=z\\sqrt{2}"
"\\iint_SdS=\\iint_Q|r_t\\times r_z|dA=\\sqrt{2}\\intop_0^{2\\pi}dt\\intop_1^2zdz=3\\pi\\sqrt{2}"
d)
"\\iint_SF\\cdot dS=\\iiint_CdivFdV"
"divF=\\frac{\\partial F_x}{\\partial x}+\\frac{\\partial F_y}{\\partial y}+\\frac{\\partial F_z}{\\partial z}"
"divF=0"
"\\iint_SF\\cdot dS=0"
Comments
Leave a comment